|
|
A038109
|
|
Divisible exactly by the square of a prime.
|
|
12
|
|
|
4, 9, 12, 18, 20, 25, 28, 36, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 100, 108, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 164, 169, 171, 172, 175, 180, 188, 196, 198, 200, 204, 207, 212, 220, 225, 228, 234, 236, 242
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers for which at least one prime factor exponent is exactly 2.
Sometimes called squarefull numbers, although that term is usually reserved for A001694. - N. J. A. Sloane, Jul 22 2012
The asymptotic density of this sequence is 1 - A330596 = 0.2514647... - Amiram Eldar, Aug 12 2020
|
|
LINKS
|
R. J. Mathar, Table of n, a(n) for n = 1..1247
|
|
EXAMPLE
|
20=5*2*2 is divisible by 2^2.
|
|
MAPLE
|
isA038109 := proc(n)
local p;
for p in ifactors(n)[2] do
if op(2, p) = 2 then
return true;
end if;
end do:
false ;
end proc: # R. J. Mathar, Dec 08 2015
# second Maple program:
q:= n-> ormap(i-> i[2]=2, ifactors(n)[2]):
select(q, [$1..300])[]; # Alois P. Heinz, Aug 12 2020
|
|
MATHEMATICA
|
Select[Range[250], MemberQ[Transpose[FactorInteger[#]][[2]], 2]&] (* Harvey P. Dale, Sep 24 2012 *)
|
|
PROG
|
(PARI) is(n)=#select(n->n==2, Set(factor(n)[, 2])) \\ Charles R Greathouse IV, Sep 17 2015
|
|
CROSSREFS
|
Cf. A001694, A013929, A284017, A284018.
Sequence in context: A081619 A336594 A304365 * A067259 A060687 A286228
Adjacent sequences: A038106 A038107 A038108 * A038110 A038111 A038112
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Felice Russo
|
|
EXTENSIONS
|
Corrected and extended by Erich Friedman
|
|
STATUS
|
approved
|
|
|
|