This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038111 Denominator of density of integers with smallest prime factor prime(n). 17
 2, 6, 15, 105, 385, 1001, 17017, 323323, 7436429, 19605131, 86822723, 3212440751, 131710070791, 5663533044013, 266186053068611, 613385252723321, 2783825377744303, 5855632691117327, 392327390304860909, 27855244711645124539, 2033432863950094091347, 160641196252057433216413 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Denominator of (Product_{k=1..n-1} (1 - 1/prime(k)))/prime(n). - Vladimir Shevelev, Jan 09 2015 a(n)/a(n-1) = prime(n)/q(n) where q(n) is 1 or a prime for all n < 1000. What are the first indices for which q(n) is composite? - M. F. Hasler, Dec 04 2018 LINKS Robert Israel, Table of n, a(n) for n = 1..277 Fred Kline and Gerry Myerson, Identity for frequency of integers with smallest prime(n) divisor, Math Stack Exchange question V. Shevelev, Generalized Newman phenomena and digit conjectures on primes, Internat. J. of Mathematics and Math. Sciences, 2008 (2008), Article ID 908045, 1-12. Eq. (5.8). FORMULA a(n) = denominator of phi(e^(psi(p_n-1)))/e^(psi(p_n)), where psi(.) is the second Chebyshev function and phi(.) is Euler's totient function. - Fred Daniel Kline, Jul 17 2014 a(n) = prime(n)*A060753(n). - Vladimir Shevelev, Jan 10 2015 a(n) = a(n-1)*prime(n)/q(n), where q(n) = 1 except for q({3, 5, 6, 10, 11, 16, 17, 18, ...}) = (2, 3, 5, 11, 7, 23, 13, 29, ...), cf. A112037. - M. F. Hasler, Dec 03 2018 EXAMPLE From M. F. Hasler, Dec 03 2018: (Start) The density of the even numbers is 1/2, thus a(1) = 2. The density of the numbers divisible by 3 but not by 2 is 1/6, thus a(2) = 6. The density of multiples of 5 not divisible by 2 or 3 is 2/30, thus a(3) = 15. (End) MAPLE N:= 100: # for the first N terms Q:= 1: p:= 1: for n from 1 to N do   p:= nextprime(p);   A[n]:= denom(Q/p);   Q:= Q * (1 - 1/p); end: seq(A[n], n=1..N); # Robert Israel, Jul 14 2014 MATHEMATICA Denominator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 1, 64} ] (* Wouter Meeussen *) Denominator@ Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/ Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 1, 21}] (* Fred Daniel Kline, Jul 14 2014 *) PROG (PARI) apply( A038111(n)=denominator(prod(k=1, n-1, 1-1/prime(k)))*prime(n), [1..30]) \\ M. F. Hasler, Dec 03 2018 CROSSREFS Cf. A038110, A060753, A112037. Sequence in context: A007709 A190339 A078328 * A261726 A302775 A181993 Adjacent sequences:  A038108 A038109 A038110 * A038112 A038113 A038114 KEYWORD nonn,frac AUTHOR EXTENSIONS Name edited by M. F. Hasler, Dec 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 16:10 EDT 2019. Contains 327966 sequences. (Running on oeis4.)