login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375522
a(n) is the denominator of Sum_{k = 1..n} 1 / (k*A375781(k)).
19
1, 2, 6, 15, 105, 1155, 1336335, 892896284280, 398631887241408183843480, 19863422690705846097977473796903171171326157280, 14091270035344566960604487534521565339065390839583445590118556137472614250693240040301050080
OFFSET
0,2
COMMENTS
Let S(n) = Sum_{k = 1..n} 1 / (k*A375781(k)) = S1(n)/S2(n) when reduced to lowest terms, where S1(n) = A375521(n), S2(n) = the present sequence.
The differences S2(n) - S1(n) are surprisingly small: for n = 1,2,...,34 the values S2(n) - S1(n) are:
1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
suggesting the conjecture that they are always 1 except for n = 4 and 6 (compare the Theorem in A374983).
LINKS
N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
EXAMPLE
The first few fractions are 0/1, 1/2, 5/6, 14/15, 103/105, 1154/1155, 1336333/1336335, 892896284279/892896284280, ...
MAPLE
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(ithprime(n)*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*ithprime(n))) end:
a:= n-> denom(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
PROG
(Python)
from itertools import islice
from math import gcd
from sympy import nextprime
def A375522_gen(): # generator of terms
p, q, k = 0, 1, 1
while (k:=nextprime(k)):
m=q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p, q))
q //= r
yield q
A375522_list = list(islice(A375522_gen(), 11)) # Chai Wah Wu, Aug 30 2024
CROSSREFS
Sequence in context: A078328 A038111 A356803 * A376051 A261726 A302775
KEYWORD
nonn,frac
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Oct 18 2024
STATUS
approved