OFFSET
1,1
COMMENTS
Let S(n) = Sum_{k = 1..n} 1 / (k*A375781(k)) = S1(n)/S2(n) when reduced to lowest terms, where S1(n) = A375521(n), S2(n) = the present sequence.
The differences S2(n) - S1(n) are surprisingly small: for n = 1,2,...,34 the values S2(n) - S1(n) are:
1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
suggesting the conjecture that they are always 1 except for n = 4 and 6 (compare the Theorem in A374983).
EXAMPLE
The first few fractions are 1/2, 5/6, 14/15, 103/105, 1154/1155, 1336333/1336335, 892896284279/892896284280, ...
PROG
(Python)
from itertools import islice
from math import gcd
from sympy import nextprime
def A375522_gen(): # generator of terms
p, q, k = 0, 1, 1
while (k:=nextprime(k)):
m=q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p, q))
q //= r
yield q
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Rémy Sigrist and N. J. A. Sloane, Aug 30 2024
STATUS
approved