login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the denominator of Sum_{k = 1..n} 1 / (k*A375781(k)).
19

%I #21 Oct 20 2024 23:41:36

%S 1,2,6,15,105,1155,1336335,892896284280,398631887241408183843480,

%T 19863422690705846097977473796903171171326157280,

%U 14091270035344566960604487534521565339065390839583445590118556137472614250693240040301050080

%N a(n) is the denominator of Sum_{k = 1..n} 1 / (k*A375781(k)).

%C Let S(n) = Sum_{k = 1..n} 1 / (k*A375781(k)) = S1(n)/S2(n) when reduced to lowest terms, where S1(n) = A375521(n), S2(n) = the present sequence.

%C The differences S2(n) - S1(n) are surprisingly small: for n = 1,2,...,34 the values S2(n) - S1(n) are:

%C 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

%C suggesting the conjecture that they are always 1 except for n = 4 and 6 (compare the Theorem in A374983).

%H Alois P. Heinz, <a href="/A375522/b375522.txt">Table of n, a(n) for n = 0..13</a>

%H N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=3RAYoaKMckM">A Nasty Surprise in a Sequence and Other OEIS Stories</a>, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane85BD.pdf">Slides</a> [Mentions this sequence]

%e The first few fractions are 0/1, 1/2, 5/6, 14/15, 103/105, 1154/1155, 1336333/1336335, 892896284279/892896284280, ...

%p s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(ithprime(n)*b(n))) end:

%p b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*ithprime(n))) end:

%p a:= n-> denom(s(n)):

%p seq(a(n), n=0..10); # _Alois P. Heinz_, Oct 18 2024

%o (Python)

%o from itertools import islice

%o from math import gcd

%o from sympy import nextprime

%o def A375522_gen(): # generator of terms

%o p, q, k = 0, 1, 1

%o while (k:=nextprime(k)):

%o m=q//(k*(q-p))+1

%o p, q = p*k*m+q, k*m*q

%o p //= (r:=gcd(p,q))

%o q //= r

%o yield q

%o A375522_list = list(islice(A375522_gen(),11)) # _Chai Wah Wu_, Aug 30 2024

%Y Cf. A375781, A375521.

%K nonn,frac

%O 0,2

%A _Rémy Sigrist_ and _N. J. A. Sloane_, Aug 30 2024

%E a(0)=1 prepended by _Alois P. Heinz_, Oct 18 2024