login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374983
a(n) is the numerator of Sum_{k = 1..n} 1 / (k*A374663(k)).
12
0, 1, 3, 11, 47, 1199, 241199, 9696481199, 11752718467440661199, 15347376819435640471203267700016821199, 23554197523775043569951631809272942045755944094320810352530343995293765199
OFFSET
0,3
COMMENTS
For the denominators see A375516 and A375517.
For n = 1..36, Sum_{k = 1..n} 1 / (k*A374663(k)) = a(n) / (1 + a(n)). In fact this holds for all n >= 1.
Theorem: Let S_n = Sum_{k = 1..n} 1 / (k*A374663(k)) and let r_n = 1 - S_n. Then for n > 1, r_n is the inverse of a positive integer, say d_n; d_{n+1} is divisible by d_n; and d_n is divisible by all positive integers < n. (See Sigrist link for proof; d_n is given in A375516.)
LINKS
Rémy Sigrist, Proof of Theorem, Aug 26 2024, revised Sep 01 2024.
N. J. A. Sloane, A Nasty Surprise in a Sequence and Other OEIS Stories, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; Slides [Mentions this sequence]
EXAMPLE
For n = 3: A374663(1) = A374663(2) = A374663(3) = 2, 1/(1*2) + 1/(2*2) + 1/(3*2) = 11/12, so a(3) = 11.
MAPLE
s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+1/(n*b(n))) end:
b:= proc(n) b(n):= 1+floor(1/((1-s(n-1))*n)) end:
a:= n-> numer(s(n)):
seq(a(n), n=0..10); # Alois P. Heinz, Oct 18 2024
PROG
(PARI) { print1 (0); t = 0; for (n = 1, 10, for (v = c=ceil(1/(n*(1-t))), oo, if (t + 1/(n*v) < 1, t += 1/(n*v); print1 (", " numerator(t)); break; ); ); ); }
(Python)
from itertools import count, islice
from math import gcd
def A374983_gen(): # generator of terms
p, q = 0, 1
for k in count(1):
yield p
m = q//(k*(q-p))+1
p, q = p*k*m+q, k*m*q
p //= (r:=gcd(p, q))
q //= r
A374983_list = list(islice(A374983_gen(), 11)) # Chai Wah Wu, Aug 28 2024
CROSSREFS
Cf. A374663, A375516 (denominators), A375517.
Sequence in context: A167564 A295833 A191344 * A308538 A181278 A126180
KEYWORD
nonn,frac
AUTHOR
Rémy Sigrist, Aug 04 2024
STATUS
approved