Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #71 Aug 12 2022 19:46:09
%S 2,6,15,105,385,1001,17017,323323,7436429,19605131,86822723,
%T 3212440751,131710070791,5663533044013,266186053068611,
%U 613385252723321,2783825377744303,5855632691117327,392327390304860909,27855244711645124539,2033432863950094091347,160641196252057433216413
%N Denominator of density of integers with smallest prime factor prime(n).
%C Denominator of (Product_{k=1..n-1} (1 - 1/prime(k)))/prime(n). - _Vladimir Shevelev_, Jan 09 2015
%C a(n)/a(n-1) = prime(n)/q(n) where q(n) is 1 or a prime for all n < 1000. What are the first indices for which q(n) is composite? - _M. F. Hasler_, Dec 04 2018
%H Robert Israel, <a href="/A038111/b038111.txt">Table of n, a(n) for n = 1..277</a>
%H Fred Kline and Gerry Myerson, <a href="http://math.stackexchange.com/q/867135/28555">Identity for frequency of integers with smallest prime(n) divisor</a>, Mathematics Stack Exchange, Jul 2014.
%H Vladimir Shevelev, <a href="http://www.hindawi.com/journals/ijmms/2008/908045.html">Generalized Newman phenomena and digit conjectures on primes</a>, Internat. J. of Mathematics and Math. Sciences, 2008 (2008), Article ID 908045, 1-12. Eq. (5.8).
%F a(n) = denominator of phi(e^(psi(p_n-1)))/e^(psi(p_n)), where psi(.) is the second Chebyshev function and phi(.) is Euler's totient function. - _Fred Daniel Kline_, Jul 17 2014
%F a(n) = prime(n)*A060753(n). - _Vladimir Shevelev_, Jan 10 2015
%F a(n) = a(n-1)*prime(n)/q(n), where q(n) = 1 except for q({3, 5, 6, 10, 11, 16, 17, 18, ...}) = (2, 3, 5, 11, 7, 23, 13, 29, ...), cf. A112037. - _M. F. Hasler_, Dec 03 2018
%e From _M. F. Hasler_, Dec 03 2018: (Start)
%e The density of the even numbers is 1/2, thus a(1) = 2.
%e The density of the numbers divisible by 3 but not by 2 is 1/6, thus a(2) = 6.
%e The density of multiples of 5 not divisible by 2 or 3 is 2/30, thus a(3) = 15. (End)
%p N:= 100: # for the first N terms
%p Q:= 1: p:= 1:
%p for n from 1 to N do
%p p:= nextprime(p);
%p A[n]:= denom(Q/p);
%p Q:= Q * (1 - 1/p);
%p end:
%p seq(A[n],n=1..N); # _Robert Israel_, Jul 14 2014
%t Denominator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 1, 64} ]
%t (* _Wouter Meeussen_ *)
%t Denominator@
%t Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/
%t Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 1, 21}]
%t (* _Fred Daniel Kline_, Jul 14 2014 *)
%o (PARI) apply( A038111(n)=denominator(prod(k=1,n-1,1-1/prime(k)))*prime(n), [1..30]) \\ _M. F. Hasler_, Dec 03 2018
%Y Cf. A038110, A060753, A112037.
%K nonn,frac
%O 1,1
%A _Wouter Meeussen_
%E Name edited by _M. F. Hasler_, Dec 03 2018