login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038112
a(n) = T(2n,n), where T(n,k) is in A037027.
6
1, 2, 9, 40, 190, 924, 4578, 22968, 116325, 593450, 3045185, 15699840, 81260816, 421993040, 2197653240, 11472991008, 60023749566, 314621200260, 1651883008050, 8685998428800, 45734484854520, 241098942106440, 1272406536645660
OFFSET
0,2
COMMENTS
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (2,0). - Joerg Arndt, Jun 30 2011
Diagonal of rational function 1/(1 - (x + y + y^2)). - Gheorghe Coserea, Aug 06 2018
LINKS
P. Barry, On the Central Coefficients of Bell Matrices, J. Int. Seq. 14 (2011) # 11.4.3 example 7.
FORMULA
a(n) = Sum_{k=0..n} C(n+k,k)*C(k,n-k). - Paul Barry, May 13 2006
a(n) = Sum_{j=0..n} binomial(2*j, n)*binomial(n+j, 2*j). - Zerinvary Lajos, Aug 22 2006
a(n) = [x^n] (1/(1-x-x^2))^(n+1). - Paul Barry, Mar 23 2011
a(n) = (n+1)*A001002(n+1).
G.f.: Sum_{n>=0} d^n/dx^n x^(2*n)*(1+x)^n/n!. - Paul D. Hanna, Aug 04 2012
Recurrence: 5*(n-1)*n*a(n) = 11*(n-1)*(2*n-1)*a(n-1) + 3*(3*n-4)*(3*n-2)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 3^(3*n+3/2)/(2^(3/2)*5^(n+1/2)*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
G.f.: A(x) where (x+1)*(27*x-5)*A(x)^3 + 4*A(x) + 1 = 0. - Mark van Hoeij, May 01 2013
EXAMPLE
G.f.: A(x) = 1 + 2*x + 9*x^2 + 40*x^3 + 190*x^4 + 924*x^5 + 4578*x^6 + ...
MAPLE
a:=n->sum(binomial(2*j, n)*(binomial(n+j, 2*j)), j=0..n): seq(a(n), n=0..21); # Zerinvary Lajos, Aug 22 2006
series(RootOf((x+1)*(27*x-5)*A^3+4*A+1, A), x=0, 30); # Mark van Hoeij, May 01 2013
MATHEMATICA
Table[Sum[Binomial[n+k, k]Binomial[k, n-k], {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Sep 30 2012 *)
Table[Binomial[2 n, n] Hypergeometric2F1[1/2 - n/2, -n/2, -2 n, -4], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 19 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, sum(k=0, n\2, (2*n-k)!/ (k! * (n-2*k)!)) / n!)}; /* Michael Somos, Sep 29 2003 */
(PARI) {a(n) = if( n<0, 0, n++; n * polcoeff(serreverse( x - x^2 - x^3 + x * O(x^n)), n))}; /* Michael Somos, Sep 29 2003 */
(PARI) /* same as in A092566 but use */
steps=[[0, 1], [1, 0], [2, 0]]; /* Joerg Arndt, Jun 30 2011 */
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ = d^n/dx^n F
{a(n)=local(A=x); A=1+sum(m=1, n, Dx(m, x^(2*m)*(1+x+x*O(x^n))^m/m!)); polcoeff(A, n)} \\ Paul D. Hanna, Aug 04 2012
(GAP) List([0..25], n->Sum([0..n], k->Binomial(n+k, k)*Binomial(k, n-k))); # Muniru A Asiru, Aug 06 2018
CROSSREFS
Sequence in context: A021001 A231134 A370479 * A268039 A367044 A235596
KEYWORD
nonn,easy
STATUS
approved