Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Aug 10 2018 02:49:31
%S 1,2,9,40,190,924,4578,22968,116325,593450,3045185,15699840,81260816,
%T 421993040,2197653240,11472991008,60023749566,314621200260,
%U 1651883008050,8685998428800,45734484854520,241098942106440,1272406536645660
%N a(n) = T(2n,n), where T(n,k) is in A037027.
%C Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (2,0). - _Joerg Arndt_, Jun 30 2011
%C Diagonal of rational function 1/(1 - (x + y + y^2)). - _Gheorghe Coserea_, Aug 06 2018
%H Vincenzo Librandi, <a href="/A038112/b038112.txt">Table of n, a(n) for n = 0..1000</a>
%H P. Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry3/barry132.html">On the Central Coefficients of Bell Matrices</a>, J. Int. Seq. 14 (2011) # 11.4.3 example 7.
%F a(n) = Sum_{k=0..n} C(n+k,k)*C(k,n-k). - _Paul Barry_, May 13 2006
%F a(n) = Sum_{j=0..n} binomial(2*j, n)*binomial(n+j, 2*j). - _Zerinvary Lajos_, Aug 22 2006
%F a(n) = [x^n] (1/(1-x-x^2))^(n+1). - _Paul Barry_, Mar 23 2011
%F a(n) = (n+1)*A001002(n+1).
%F G.f.: Sum_{n>=0} d^n/dx^n x^(2*n)*(1+x)^n/n!. - _Paul D. Hanna_, Aug 04 2012
%F Recurrence: 5*(n-1)*n*a(n) = 11*(n-1)*(2*n-1)*a(n-1) + 3*(3*n-4)*(3*n-2)*a(n-2). - _Vaclav Kotesovec_, Oct 08 2012
%F a(n) ~ 3^(3*n+3/2)/(2^(3/2)*5^(n+1/2)*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 08 2012
%F G.f.: A(x) where (x+1)*(27*x-5)*A(x)^3 + 4*A(x) + 1 = 0. - _Mark van Hoeij_, May 01 2013
%e G.f.: A(x) = 1 + 2*x + 9*x^2 + 40*x^3 + 190*x^4 + 924*x^5 + 4578*x^6 + ...
%p a:=n->sum(binomial(2*j,n)*(binomial(n+j,2*j)),j=0..n): seq(a(n), n=0..21); # _Zerinvary Lajos_, Aug 22 2006
%p series(RootOf((x+1)*(27*x-5)*A^3+4*A+1,A),x=0,30); # _Mark van Hoeij_, May 01 2013
%t Table[Sum[Binomial[n+k,k]Binomial[k,n-k],{k,0,n}],{n,0,30}] (* _Harvey P. Dale_, Sep 30 2012 *)
%t Table[Binomial[2 n, n] Hypergeometric2F1[1/2 - n/2, -n/2, -2 n, -4], {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 19 2016 *)
%o (PARI) {a(n) = if( n<0, 0, sum(k=0, n\2, (2*n-k)!/ (k! * (n-2*k)!)) / n!)}; /* _Michael Somos_, Sep 29 2003 */
%o (PARI) {a(n) = if( n<0, 0, n++; n * polcoeff(serreverse( x - x^2 - x^3 + x * O(x^n)), n))}; /* _Michael Somos_, Sep 29 2003 */
%o (PARI) /* same as in A092566 but use */
%o steps=[[0,1], [1,0], [2,0]]; /* _Joerg Arndt_, Jun 30 2011 */
%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} \\ = d^n/dx^n F
%o {a(n)=local(A=x); A=1+sum(m=1, n, Dx(m, x^(2*m)*(1+x+x*O(x^n))^m/m!)); polcoeff(A, n)} \\ _Paul D. Hanna_, Aug 04 2012
%o (GAP) List([0..25],n->Sum([0..n],k->Binomial(n+k,k)*Binomial(k,n-k))); # _Muniru A Asiru_, Aug 06 2018
%K nonn,easy
%O 0,2
%A _Floor van Lamoen_