login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125070 a(n) = number of nonzero exponents in the prime factorization of n which are not primes. 9
0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 0, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
LINKS
FORMULA
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = A005171(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = Sum_{p prime} (P(p) - P(p+1)) = 0.39847584805803104040..., where P(s) is the prime zeta function. (End)
EXAMPLE
720 has the prime-factorization of 2^4 *3^2 *5^1. Two of these exponents, 4 and 1, are not primes. So a(720) = 2.
MATHEMATICA
f[n_] := Length @ Select[Last /@ FactorInteger[n], ! PrimeQ[ # ] &]; Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
PROG
(PARI) A125070(n) = vecsum(apply(e -> if(isprime(e), 0, 1), factorint(n)[, 2])); \\ Antti Karttunen, Jul 07 2017
CROSSREFS
Sequence in context: A286852 A341595 A369428 * A125071 A335699 A177207
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Nov 18 2006
EXTENSIONS
Extended by Ray Chandler, Nov 19 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 14:32 EDT 2024. Contains 375987 sequences. (Running on oeis4.)