The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077761 Decimal expansion of Mertens's constant, which is the limit of (Sum_{i=1..k} 1/prime(i)) - log(log(prime(k))) as k goes to infinity, where prime(i) is the i-th prime number. 57
 2, 6, 1, 4, 9, 7, 2, 1, 2, 8, 4, 7, 6, 4, 2, 7, 8, 3, 7, 5, 5, 4, 2, 6, 8, 3, 8, 6, 0, 8, 6, 9, 5, 8, 5, 9, 0, 5, 1, 5, 6, 6, 6, 4, 8, 2, 6, 1, 1, 9, 9, 2, 0, 6, 1, 9, 2, 0, 6, 4, 2, 1, 3, 9, 2, 4, 9, 2, 4, 5, 1, 0, 8, 9, 7, 3, 6, 8, 2, 0, 9, 7, 1, 4, 1, 4, 2, 6, 3, 1, 4, 3, 4, 2, 4, 6, 6, 5, 1, 0, 5, 1, 6, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Graham, Knuth & Patashnik incorrectly give this constant as 0.261972128. - Robert G. Wilson v, Dec 02 2005 [This was corrected in the second edition (1994). - T. D. Noe, Mar 11 2017] Also the average deviation of the number of distinct prime factors: sum_{n < x} omega(n) = x log log x + B_1 x + O(x) where B_1 is this constant, see (e.g.) Hardy & Wright. - Charles R Greathouse IV, Mar 05 2021 Named after the Polish mathematician Franz Mertens (1840-1927). Sometimes called Meissel-Mertens constant, after Mertens and the German astronomer Ernst Meissel (1826-1895). - Amiram Eldar, Jun 16 2021 REFERENCES Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2004, pp. 94-98 Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, A Foundation For Computer Science, Addison-Wesley, Reading, MA, 1989, p. 23. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed. (1975). Oxford, England: Oxford University Press. See 22.10, "The number of prime factors of n". József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section VII.28, p. 257. LINKS Robert G. Wilson v, Table of n, a(n) for n = 0..5000 Christian Axler, New estimates for some functions defined over primes, Integers, Vol. 18 (2018), Article #A52. Chris Caldwell, The Prime Pages, There are infinitely many primes, but, how big of an infinity? Henri Cohen, High precision computation of Hardy-Littlewood constants, preprint, 1998. - From N. J. A. Sloane, Jan 26 2013 Pierre Dusart, Explicit estimates of some functions over primes, The Ramanujan Journal, Vol. 45 (2018), pp. 227-251. Pierre Dusart, On the divergence of the sum of prime reciprocals, WSEAS Transactions on Math. (2023) Vol.22, 508-513. Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 203. Philippe Flajolet and Ilan Vardi, Zeta function expansions of some classical constants. Pieter Moree, Mathematical constants. Dimbinaina Ralaivaosaona and Faratiana Brice Razakarinoro, An explicit upper bound for Siegel zeros of imaginary quadratic fields, arXiv:2001.05782 [math.NT], 2020. Xavier Gourdon and Pascal Sebah, Constants from number theory Torsten Sillke, The Harmonic Numbers and Series. Jonathan Sondow and Kieren MacMillan, Primary pseudoperfect numbers, arithmetic progressions, and the Erdos-Moser equation, Amer. Math. Monthly, Vol. 124, No. 3 (2017), pp. 232-240; also on arXiv preprint, arXiv:math/1812.06566 [math.NT], 2018. Mark B. Villarino, Mertens' proof of Mertens' Theorem, arXiv:math/0504289 [math.HO], 2005. Eric Weisstein's World of Mathematics, Mertens Constant. Eric Weisstein's World of Mathematics, Prime Zeta Function. Eric Weisstein's World of Mathematics, Harmonic Series of Primes. Wikipedia, Meissel-Mertens constant. Marek Wójtowicz, Another proof on the existence of Mertens's constant, Proc. Japan Acad. Ser. A Math. Sci., Vol. 87, No. 2 (2011), pp. 22-23. FORMULA Equals A001620 - Sum_{n>=2} zeta_prime(n)/n where the zeta prime sequence is A085548, A085541, A085964, A085965, A085966 etc. [Sebah and Gourdon] - R. J. Mathar, Apr 29 2006 Equals gamma + Sum_{p prime} (log(1-1/p) + 1/p), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021 EXAMPLE 0.26149721284764278375542683860869585905156664826119920619206421392... MATHEMATICA \$MaxExtraPrecision = 400; RealDigits[ N[EulerGamma + NSum[(MoebiusMu[m]/m)*Log[N[Zeta[m], 120]], {m, 2, 1000}, Method -> "EulerMaclaurin", AccuracyGoal -> 120, NSumTerms -> 1000, PrecisionGoal -> 120, WorkingPrecision -> 120] , 120]][[1, 1 ;; 105]] (* or, from version 7 up: *) digits = 105; M = EulerGamma - NSum[ PrimeZetaP[n] / n, {n, 2, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 3*digits]; RealDigits[M, 10, digits] // First (* Jean-François Alcover, Mar 16 2011, updated Sep 01 2015 *) CROSSREFS Cf. A001620. Sequence in context: A154584 A129677 A324033 * A220406 A220794 A220959 Adjacent sequences: A077758 A077759 A077760 * A077762 A077763 A077764 KEYWORD cons,nonn AUTHOR T. D. Noe, Nov 14 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 13:46 EST 2023. Contains 367679 sequences. (Running on oeis4.)