login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077760
Nonsquares which in at least two ways are the product of two numbers with the same digits (leading zeros are forbidden).
2
101556, 121968, 124012, 133875, 144648, 172900, 185472, 226800, 352170, 433755, 2096640, 3779136, 4264416, 5166504, 5333680, 5448960, 5651919, 5894784, 5955264, 5983936, 6003088, 6174630, 6197724, 6324318, 6351840, 6429600, 6494400, 6514060, 6794424, 6874560, 7064496
OFFSET
1,1
COMMENTS
Subsequence of A072443.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10408 (terms <= 2*10^10)
EXAMPLE
101556 = 156*651 = 273*372; 2096640 = 1092*1920 = 1365*1536.
PROG
(PARI) {for(n=100, 6500000, my(k=logint(n, 100), f=divisors(n), v=[]); for(h=1, matsize(f)[2], if(10^k<f[h]&& f[h]<10^(k+1), v=concat(v, f[h]))); my(b=matsize(v)[2]); if(b>1, my(w=[]); for(i=1, b, my(s=[], a=v[i]); while(a>0, my(d=divrem(a, 10)); a=d[1]; s=concat(d[2], s)); w=concat(w, [vecsort(s)])); my(c=0); for(i=1, b-1, for(j=i+1, b, if(c<2&&w[i]==w[j], if(v[i]*v[j]==n, if(c==1, print1(n, ", "); c=2, c=1)))))))}
CROSSREFS
Sequence in context: A229684 A187642 A023077 * A218170 A153050 A203592
KEYWORD
nonn,base
AUTHOR
Klaus Brockhaus, Nov 14 2002
EXTENSIONS
Offset changed to 1 by and more terms from David A. Corneth, Sep 08 2024
STATUS
approved