login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346482
Dirichlet inverse of A005171, the characteristic function of nonprimes.
4
1, 0, 0, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, 0, 0, -1, 0, -1, -1, -1, 0, 1, -1, -1, -1, -1, 0, -1, 0, 1, -1, -1, -1, 2, 0, -1, -1, 1, 0, -1, 0, -1, -1, -1, 0, 3, -1, -1, -1, -1, 0, 1, -1, 1, -1, -1, 0, 3, 0, -1, -1, 1, -1, -1, 0, -1, -1, -1, 0, 5, 0, -1, -1, -1, -1, -1, 0, 3, 0, -1, 0, 3, -1, -1, -1, 1, 0, 3
OFFSET
1,36
COMMENTS
In addition to A168645, -1's occur also in the following positions: 256, 512, 6561, 16384, 19683, 32768, 390625, 1048576, ...
LINKS
FORMULA
a(1) = 1; and for n > 2, a(n) = -Sum_{d|n, d<n} a(d) * A005171(n/d).
a(n) = A346483(n) - A005171(n).
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A005171(n) = (1-isprime(n));
v346482 = DirInverseCorrect(vector(up_to, n, A005171(n)));
A346482(n) = v346482[n];
CROSSREFS
Union of A000040 and A346484 gives the positions of zeros.
Sequence in context: A363877 A322452 A076754 * A379259 A364043 A339933
KEYWORD
sign
AUTHOR
Mats Granvik and Antti Karttunen, Aug 17 2021
STATUS
approved