login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346483
Sum of A005171 (characteristic function of nonprimes) and its Dirichlet inverse.
2
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 2, 0
OFFSET
1,1
COMMENTS
The first negative term is a(192) = -1.
Positions of nonzero terms are given by A033987, except for positions n = 256, 512, 6561, 16384, 19683, 32768, 390625, 1048576, ..., at which a(n) = 0 also.
LINKS
FORMULA
a(n) = A005171(n) + A346482(n).
For n > 1, a(n) = -Sum_{d|n, 1<d<n} A005171(d) * A346482(n/d).
MATHEMATICA
nn = 87; b = Table[If[PrimeQ[n], 1, 0], {n, nn}]; a = 1 - b; A = Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]; B = Inverse[A]; S = A[[Range[nn]]] + B[[Range[nn]]]; S[[All, 1]]
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A005171(n) = (1-isprime(n));
v346482 = DirInverseCorrect(vector(up_to, n, A005171(n)));
A346482(n) = v346482[n];
A346483(n) = (A005171(n)+A346482(n));
CROSSREFS
KEYWORD
sign
AUTHOR
Mats Granvik and Antti Karttunen, Aug 17 2021
STATUS
approved