OFFSET
1,1
COMMENTS
Also numbers such that no permutation of all proper divisors exists with coprime adjacent elements: A178254(a(n)) = 0. - Reinhard Zumkeller, May 24 2010
Also, numbers that can be written as a product of at least two composites, i.e., admit a nontrivial factorization into composites. - Felix Fröhlich, Dec 22 2018
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
FORMULA
Product p_i^e_i with Sum e_i >= 4.
a(n) ~ n. - Charles R Greathouse IV, Jul 11 2024
MAPLE
with(numtheory): A033987:=n->`if`(bigomega(n)>3, n, NULL): seq(A033987(n), n=1..300); # Wesley Ivan Hurt, May 26 2015
MATHEMATICA
Select[Range[300], PrimeOmega[#]>3&] (* Harvey P. Dale, Mar 20 2016 *)
PROG
(PARI) is(n)=bigomega(n)>3 \\ Charles R Greathouse IV, May 26 2015
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A033987(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, i)) for i in range(2, 4)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Patrick De Geest, Jun 15 1998
STATUS
approved