login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are divisible by at least 4 primes (counted with multiplicity).
17

%I #35 Aug 23 2024 20:09:41

%S 16,24,32,36,40,48,54,56,60,64,72,80,81,84,88,90,96,100,104,108,112,

%T 120,126,128,132,135,136,140,144,150,152,156,160,162,168,176,180,184,

%U 189,192,196,198,200,204,208,210,216,220,224,225,228,232,234,240,243

%N Numbers that are divisible by at least 4 primes (counted with multiplicity).

%C Complement of A037144: A001222(a(n)) > 3; A117358(a(n)) > 1. - _Reinhard Zumkeller_, Mar 10 2006

%C Also numbers such that no permutation of all proper divisors exists with coprime adjacent elements: A178254(a(n)) = 0. - _Reinhard Zumkeller_, May 24 2010

%C Also, numbers that can be written as a product of at least two composites, i.e., admit a nontrivial factorization into composites. - _Felix Fröhlich_, Dec 22 2018

%H T. D. Noe, <a href="/A033987/b033987.txt">Table of n, a(n) for n=1..1000</a>

%F Product p_i^e_i with Sum e_i >= 4.

%F A001055(a(n)) > A033273(a(n)). - _Juri-Stepan Gerasimov_, Nov 09 2009

%F a(n) ~ n. - _Charles R Greathouse IV_, Jul 11 2024

%p with(numtheory): A033987:=n->`if`(bigomega(n)>3, n, NULL): seq(A033987(n), n=1..300); # _Wesley Ivan Hurt_, May 26 2015

%t Select[Range[300],PrimeOmega[#]>3&] (* _Harvey P. Dale_, Mar 20 2016 *)

%o (PARI) is(n)=bigomega(n)>3 \\ _Charles R Greathouse IV_, May 26 2015

%o (Python)

%o from math import prod, isqrt

%o from sympy import primerange, integer_nthroot, primepi

%o def A033987(n):

%o def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))

%o def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,4)))

%o kmin, kmax = 1,2

%o while f(kmax) >= kmax:

%o kmax <<= 1

%o while True:

%o kmid = kmax+kmin>>1

%o if f(kmid) < kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o if kmax-kmin <= 1:

%o break

%o return kmax # _Chai Wah Wu_, Aug 23 2024

%Y Subsequence of A033942; A178212 is a subsequence.

%Y Cf. A014613, A001055, A033273.

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Patrick De Geest_, Jun 15 1998