login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033273
Number of nonprime divisors of n.
29
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 9, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 9, 2, 2, 2, 6, 1, 9, 2, 4, 2, 2, 2, 10, 1, 4, 4, 7, 1, 5, 1, 6
OFFSET
1,4
LINKS
FORMULA
a(n) = A000005(n) - A001221(n).
a((n)) = n and a(m) <> n for m < A055079(n). - Reinhard Zumkeller, Dec 16 2013
G.f.: Sum_{k>=1} (x^k - x^prime(k))/((1 - x^k)*(1 - x^prime(k))). - Ilya Gutkovskiy, Jan 17 2017
Dirichlet g.f.: zeta(s)*(zeta(s)-primezeta(s)). - Benedict W. J. Irwin, Jul 11 2018
Sum_{k=1..n} a(k) ~ n*log(n) - n*log(log(n)) + (2*gamma - 1 - B)*n, where gamma is Euler's constant (A001620) and B is Mertens's constant (A077761). - Amiram Eldar, Nov 27 2022
MATHEMATICA
Table[Length[Select[Divisors[n], ! PrimeQ[#] &]], {n, 104}] (* Jayanta Basu, May 23 2013 *)
Table[DivisorSigma[0, n] - PrimeNu[n], {n, 100}] (* Vincenzo Librandi, May 17 2017 *)
Table[Count[Divisors[n], _?CompositeQ], {n, 110}]+1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 11 2019 *)
PROG
(Haskell)
a033273 = length . filter ((== 0) . a010051) . a027750_row
-- Reinhard Zumkeller, Dec 16 2013
(PARI) a(n) = numdiv(n) - omega(n); \\ Michel Marcus, Apr 28 2016
(Magma) [NumberOfDivisors(n) - #PrimeDivisors(n): n in [1..150]]; // Vincenzo Librandi, May 17 2017
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Reinhard Zumkeller, Sep 02 2003
Corrected error in offset. - Jaroslav Krizek, May 04 2009
Extended by Ray Chandler, Aug 07 2010
STATUS
approved