OFFSET
5,2
COMMENTS
Number of standard tableaux of shape (n-4,2,2,2) (n>=6). - Emeric Deutsch, May 20 2004
Number of short bushes with n+2 edges and 4 branch nodes (i.e. nodes with outdegree at least 2). A short bush is an ordered tree with no nodes of outdegree 1. Example: a(6)=14 because the only short bushes with 8 edges and 4 branch nodes are the fourteen full binary trees with 8 edges. Column 4 of A108263. - Emeric Deutsch, May 29 2005
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 5..1000
David Beckwith, Legendre polynomials and polygon dissections?, Amer. Math. Monthly, Vol. 105, No. 3 (1998), 256-257.
Frank R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., Vol. 204, No. 1-3 (1999), 73-112.
Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978), 370-388, Table 1.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = binomial(n+2, 3)*binomial(n-3, 3)/4.
G.f.: x^6*(14-14x+6x^2-x^3)/(1-x)^7. - Emeric Deutsch, May 29 2005
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=6} 1/a(n) = 109/1225.
Sum_{n>=6} (-1)^n/a(n) = 192*log(2)/35 - 4582/1225. (End)
MATHEMATICA
Table[(Binomial[n+2, 3]Binomial[n-3, 3])/4, {n, 5, 40}] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {0, 14, 84, 300, 825, 1925, 4004}, 40] (* Harvey P. Dale, Mar 13 2014 *)
CoefficientList[Series[x (14 - 14 x + 6 x^2 - x^3)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
PROG
(Magma) [(Binomial(n+2, 3)*Binomial(n-3, 3))/4: n in [5..50]]; // Vincenzo Librandi, Mar 15 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Mar 15 2014
STATUS
approved