login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033275
Number of diagonal dissections of an n-gon into 3 regions.
9
0, 5, 21, 56, 120, 225, 385, 616, 936, 1365, 1925, 2640, 3536, 4641, 5985, 7600, 9520, 11781, 14421, 17480, 21000, 25025, 29601, 34776, 40600, 47125, 54405, 62496, 71456, 81345, 92225, 104160, 117216, 131461, 146965, 163800, 182040, 201761, 223041, 245960
OFFSET
4,2
COMMENTS
Number of standard tableaux of shape (n-3,2,2) (n>=5). - Emeric Deutsch, May 13 2004
Number of short bushes with n+1 edges and 3 branch nodes (i.e., nodes with outdegree at least 2). A short bush is an ordered tree with no nodes of outdegree 1. Example: a(5)=5 because the only short bushes with 6 edges and 3 branch nodes are the five full binary trees with 6 edges. Column 3 of A108263. - Emeric Deutsch, May 29 2005
LINKS
David Beckwith, Legendre polynomials and polygon dissections?, Amer. Math. Monthly, Vol. 105, No. 3 (1998), pp. 256-257.
Frank R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., Vol. 204, No. 1-3 (1999), pp. 73-112.
Ronald C. Read, On general dissections of a polygon, Aequat. Math., Vol. 18 (1978), pp. 370-388, Table 1.
FORMULA
a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3.
G.f.: z^5*(5-4*z+z^2)/(1-z)^5. - Emeric Deutsch, May 29 2005
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=5} 1/a(n) = 43/150.
Sum_{n>=5} (-1)^(n+1)/a(n) = 16*log(2)/5 - 154/75. (End)
E.g.f.: x*(exp(x)*(12 - 6*x + x^3) - 6*(2 + x))/12. - Stefano Spezia, Feb 21 2024
MATHEMATICA
a[4]=0; a[n_]:=Binomial[n+1, 2]*Binomial[n-3, 2]/3; Table[a[n], {n, 4, 43}] (* Indranil Ghosh, Feb 20 2017 *)
PROG
(PARI) concat(0, Vec(z^5*(5-4*z+z^2)/(1-z)^5 + O(z^60))) \\ Michel Marcus, Jun 18 2015
(PARI) a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3 \\ Charles R Greathouse IV, Feb 20 2017
(Sage)
def A033275(n): return (binomial(n+1, 2)*binomial(n-3, 2))//3
print([A033275(n) for n in range(4, 50)]) # Peter Luschny, Apr 03 2020
CROSSREFS
2nd skew subdiagonal of A033282.
Sequence in context: A122244 A146854 A299120 * A166464 A059859 A146617
KEYWORD
nonn,easy
STATUS
approved