login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299120
a(n) = (n-1)*(n-2)*(n+3)*(n+2)/12.
3
1, 0, 0, 5, 21, 56, 120, 225, 385, 616, 936, 1365, 1925, 2640, 3536, 4641, 5985, 7600, 9520, 11781, 14421, 17480, 21000, 25025, 29601, 34776, 40600, 47125, 54405, 62496, 71456, 81345, 92225, 104160, 117216, 131461, 146965, 163800, 182040, 201761, 223041
OFFSET
0,4
FORMULA
a(n) = n^4/12 + n^3/6 - 7*n^2/12 - 2*n/3 + 1 = (n-1)*(n-2)*(n+3)*(n+2)/12.
From Colin Barker, Feb 05 2018: (Start)
G.f.: (1 - 5*x + 10*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5. (End)
a(n) = A033275(n+2) for n > 1. - Georg Fischer, Oct 09 2018
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=3} 1/a(n) = 43/150.
Sum_{n>=3} (-1)^(n+1)/a(n) = 16*log(2)/5 - 154/75. (End)
E.g.f.: exp(x)*(12 - 12*x + 6*x^2 + 8*x^3 + x^4)/12. - Stefano Spezia, Feb 21 2024
MAPLE
seq(n^4/12+n^3/6-7*n^2/12-2*n/3+1, n=0..10^3); # Muniru A Asiru, Feb 04 2018
MATHEMATICA
Rest@ CoefficientList[Series[(1 - 5 x + 10 x^2 - 5 x^3 + x^4)/(1 - x)^5, {x, 0, 41}], x] (* Michael De Vlieger, Feb 10 2018 *)
f[n_] := n^4/12 + n^3/6 - 7*n^2/12 - 2*n/3 + 1; Array[f, 40, 0] (* or *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 0, 0, 5, 21}, 40] (* Robert G. Wilson v, Mar 12 2018 *)
PROG
(Magma) [n^4/12 + n^3/6 - 7*n^2/12 - 2*n/3 + 1: n in [0..40]];
(GAP) List([0..10^3], n->n^4/12+n^3/6-7*n^2/12-2*n/3+1); # Muniru A Asiru, Feb 04 2018
(PARI) Vec((1 - 5*x + 10*x^2 - 5*x^3 + x^4) / (1 - x)^5 + O(x^50)) \\ Colin Barker, Feb 05 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Wolfdieter Lang, Apr 06 2018
STATUS
approved