login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077415
a(n) = n*(n+2)*(n-2)/3.
19
0, 5, 16, 35, 64, 105, 160, 231, 320, 429, 560, 715, 896, 1105, 1344, 1615, 1920, 2261, 2640, 3059, 3520, 4025, 4576, 5175, 5824, 6525, 7280, 8091, 8960, 9889, 10880, 11935, 13056, 14245, 15504, 16835, 18240, 19721, 21280, 22919, 24640, 26445
OFFSET
2,2
COMMENTS
a(n) is the number of independent components of a 3-tensor t(a,b,c) which satisfies t(a,b,c)=t(b,a,c) and sum(t(a,a,c),a=1..n)=0 for all c and t(a,b,c)+t(b,c,a)+t(c,a,b)=0, with a,b,c range 1..n. (3-tensor in n-dimensional space which is symmetric and traceless in one pair of its indices and satisfies the cyclic identity.)
Number of standard tableaux of shape (n-1,2,1) (n>=3). - Emeric Deutsch, May 13 2004
Zero followed by partial sums of A028387, starting at n=1. - Klaus Brockhaus, Oct 21 2008
For n>=4, a(n-1) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0101 (the first n-4 zeros), or, the same, a(n-1) is up-down coefficient {n,5} (see comment in A060351). - Vladimir Shevelev, Feb 14 2014
For n>=3, a(n) equals the second immanant of the (n-1) X (n-1) tridiagonal matrix with 2's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jan 08 2016
LINKS
Mark Roger Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32.
FORMULA
a(n) = n*(n+2)*(n-2)/3 = A077414(n) - binomial(n+2,3) = A077414(n) - A000292(n-1).
G.f.: x^3*(5 - 4*x + x^2)/(1-x)^4.
a(n) = A084990(n-1) - 1. - Reinhard Zumkeller, Aug 20 2007
a(n) = Sum_{i=0..floor((n-1)/2)} (-1)^i * 2^(n-2*i-1) * binomial(n-i-1, i) * (n-2*i-2). - John M. Campbell, Jan 08 2016
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=3} 1/a(n) = 11/32.
Sum_{n>=3} (-1)^(n+1)/a(n) = 5/32. (End)
E.g.f.: x*(1 + exp(x)*(x^2 + 3*x - 3)/3). - Stefano Spezia, Mar 06 2024
MAPLE
seq((n^3-4*n)/3, n=2..35); # Zerinvary Lajos, Jan 20 2007
MATHEMATICA
Print[Table[Sum[(-1)^i*2^(n-2*i-1)*Binomial[n-i-1, i]*(n-2*i-2), {i, 0, Floor[(n-1)/2]}], {n, 2, 100}]] ; (* John M. Campbell, Jan 08 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 5, 16, 35}, 50] (* Vincenzo Librandi, Jan 09 2016 *)
Table[n*(n + 2)*(n - 2)/3, {n, 2, 50}] (* G. C. Greubel, Jan 18 2018 *)
PROG
(PARI) {a=0; print1(a, ", "); for(n=1, 42, print1(a=a+n+(n+1)^2, ", "))} \\ Klaus Brockhaus, Oct 21 2008
(PARI) concat(0, Vec(x^3*(5-4*x+x^2)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 08 2015
(Magma) [n*(n+2)*(n-2)/3: n in [2..50]]; /* or */ I:=[0, 5, 16, 35]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016
CROSSREFS
Cf. A000292, A028387 (first differences), A033275 (partial sums), A060351, A077414, A084990.
Sequence in context: A246697 A098404 A190970 * A234362 A363613 A363605
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Nov 29 2002
STATUS
approved