|
|
A084990
|
|
a(n) = n*(n^2+3*n-1)/3.
|
|
24
|
|
|
0, 1, 6, 17, 36, 65, 106, 161, 232, 321, 430, 561, 716, 897, 1106, 1345, 1616, 1921, 2262, 2641, 3060, 3521, 4026, 4577, 5176, 5825, 6526, 7281, 8092, 8961, 9890, 10881, 11936, 13057, 14246, 15505, 16836, 18241, 19722, 21281, 22920, 24641, 26446, 28337, 30316
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the number of triples (x,y,z) in {1,2,...,n}^3 with x <= y <= z or x >= y >= z. - Jack Kennedy, Mar 14 2009
a(2*n) is the difference between numbers of nonnegative multiples of 2*n+1 with even and odd digit sum in base 2*n in interval [0, 16*n^4). - Vladimir Shevelev, May 18 2012
|
|
LINKS
|
|
|
FORMULA
|
a(2*n) = Sum_{i=0..16*n^4, i==0 (mod 2*n+1)} (-1)^s_(2*n)(i), where s_k(n) is the digit sum of n in base k. - Vladimir Shevelev, May 18 2012
a(2*n) = (2/(2*n+1))*Sum_{i=1..n} tan^4(Pi*i/(2*n+1)). - Vladimir Shevelev, May 23 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Vincenzo Librandi, Mar 28 2014
|
|
EXAMPLE
|
Let n=2. Consider nonnegative multiples of 5 up to 16*2^4 - 1 = 255. There are 52 such numbers and from them only 8 (namely, 35, 50, 55, 115, 140, 200, 205, 220) have an odd digit sum in base 4. Therefore, a(4) = (52 - 8) - 8 = 36. - Vladimir Shevelev, May 18 2012
|
|
MAPLE
|
|
|
MATHEMATICA
|
CoefficientList[Series[(x + 2 x^2 - x^3)/((1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 17}, 50] (* Harvey P. Dale, Aug 18 2015 *)
|
|
PROG
|
(Magma) I:=[0, 1, 6, 17]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Mar 28 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|