login
A363605
Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^5.
6
0, 1, 5, 16, 35, 76, 126, 226, 335, 531, 715, 1092, 1365, 1947, 2420, 3286, 3876, 5251, 5985, 7861, 8986, 11342, 12650, 16252, 17585, 21841, 24086, 29367, 31465, 38946, 40920, 49662, 53080, 62782, 66206, 80082, 82251, 97376, 102640, 120001, 123410, 146628
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>0} binomial(k+2,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+2,4).
MATHEMATICA
a[n_] := DivisorSum[n, Binomial[# + 2, 4] &]; Array[a, 40] (* Amiram Eldar, Jul 25 2023 *)
PROG
(PARI) my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^5)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 11 2023
STATUS
approved