OFFSET
1,3
COMMENTS
Inverse Mobius transform of A000217. - R. J. Mathar, Jan 19 2009
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
FORMULA
G.f.: Sum_{k>0} x^(2*k)/(1-x^k)^3. - Vladeta Jovovic, Dec 17 2002
Row sums of triangle A134840. - Gary W. Adamson, Nov 12 2007
G.f. A(x) = (1/2) * x * d/dx log( B(x) ) where B() is g.f. for A052847. - Michael Somos, Feb 12 2008
G.f.: Sum_{k>0} ((k^2 - k) / 2) * x^k / (1 - x^k). - Michael Somos, Feb 12 2008
From Peter Bala, Jan 21 2021: (Start)
G.f.: A(x) = (1/2)* Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3. - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)
EXAMPLE
x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 19*x^6 + 21*x^7 + 35*x^8 + 39*x^9 + 56*x^10 + ...
MAPLE
with(numtheory):
seq((1/2)*(sigma[2](n) - sigma[1](n)), n = 1..100); # Peter Bala, Jan 21 2021
MATHEMATICA
A069153[n_]:=Plus@@Binomial[Divisors[n], 2]; Array[A069153, 100] (* Enrique Pérez Herrero, Feb 21 2012 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d^2 - d) / 2)}
(PARI) a(n) = my(f = factor(n)); (sigma(f, 2) - sigma(f)) / 2; \\ Amiram Eldar, Jan 01 2025
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 08 2002
STATUS
approved