login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069153
a(n) = Sum_{d|n} d*(d-1)/2.
12
0, 1, 3, 7, 10, 19, 21, 35, 39, 56, 55, 91, 78, 113, 118, 155, 136, 208, 171, 252, 234, 287, 253, 395, 310, 404, 390, 497, 406, 614, 465, 651, 586, 698, 626, 910, 666, 875, 822, 1060, 820, 1202, 903, 1239, 1144, 1289, 1081, 1643, 1197, 1581, 1414, 1736
OFFSET
1,3
COMMENTS
Inverse Mobius transform of A000217. - R. J. Mathar, Jan 19 2009
LINKS
Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012).
FORMULA
G.f.: Sum_{k>0} x^(2*k)/(1-x^k)^3. - Vladeta Jovovic, Dec 17 2002
Row sums of triangle A134840. - Gary W. Adamson, Nov 12 2007
G.f. A(x) = (1/2) * x * d/dx log( B(x) ) where B() is g.f. for A052847. - Michael Somos, Feb 12 2008
G.f.: Sum_{k>0} ((k^2 - k) / 2) * x^k / (1 - x^k). - Michael Somos, Feb 12 2008
From Peter Bala, Jan 21 2021: (Start)
a(n) = (1/2)*(sigma_2(n) - sigma_1(n)) = (1/2)*(A001157(n) A000203(n)) = (1/2)*A086666.
G.f.: A(x) = (1/2)* Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3. - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)) / 2.
Sum_{k=1..n} a(k) ~ (zeta(3)/6) * n^3. (End)
EXAMPLE
x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 19*x^6 + 21*x^7 + 35*x^8 + 39*x^9 + 56*x^10 + ...
MAPLE
with(numtheory):
seq((1/2)*(sigma[2](n) - sigma[1](n)), n = 1..100); # Peter Bala, Jan 21 2021
MATHEMATICA
A069153[n_]:=Plus@@Binomial[Divisors[n], 2]; Array[A069153, 100] (* Enrique Pérez Herrero, Feb 21 2012 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, d^2 - d) / 2)}
(PARI) a(n) = my(f = factor(n)); (sigma(f, 2) - sigma(f)) / 2; \\ Amiram Eldar, Jan 01 2025
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 08 2002
STATUS
approved