The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000223 Let A(n) = #{(i,j,k): i^2 + j^2 + k^2 <= n}, V(n) = (4/3)Pi*n^(3/2), P(n) = A(n) - V(n); A000092 gives values of n where |P(n)| sets a new record; sequence gives (nearest integer to, I believe) P(A000092(n)). (Formerly M2619 N1036) 7
 3, 7, 10, 19, 32, 34, 37, 51, 81, 119, 122, 134, 157, 160, 161, 174, 221, 252, 254, 294, 305, 309, 364, 371, 405, 580, 682, 734, 756, 763, 776, 959, 1028, 1105, 1120, 1170, 1205, 1550, 1570, 1576, 1851, 1930, 2028, 2404, 2411, 2565, 2675, 2895, 2905, 2940, 3133, 3211, 3240, 3428 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Record values of (absolute values of) A210641 = A117609-A210639. It appears that the records occur always at positive elements of that sequence. (One could add an initial a(0)=1.) - M. F. Hasler, Mar 26 2012 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS W. C. Mitchell, The number of lattice points in a k-dimensional hypersphere, Math. Comp., 20 (1966), 300-310. FORMULA a(n) = |A210641(A000092(n))|. - M. F. Hasler, Mar 26 2012 MATHEMATICA nmax = 3*10^4; P[n_] := Sum[SquaresR[3, k], {k, 0, n}] - Round[(4/3)*Pi* n^(3/2)]; record = 0; A000223 = Reap[For[n = 1, n <= nmax, n++, If[(p = Abs[pn = P[n]]) > record, record = p; Print[pn]; Sow[pn]]]][[2, 1]] (* Jean-François Alcover, Feb 05 2016 *) PROG (PARI) m=0; for(n=0, 1e4, m

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 09:20 EDT 2021. Contains 342845 sequences. (Running on oeis4.)