This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000099 Let A(n) = #{(i,j): i^2 + j^2 <= n}, V(n) = Pi*n, P(n) = A(n) - V(n); sequence gives values of n where |P(n)| sets a new record. (Formerly M1374 N0534) 6
 1, 2, 5, 10, 20, 24, 26, 41, 53, 130, 149, 205, 234, 287, 340, 410, 425, 480, 586, 840, 850, 986, 1680, 1843, 2260, 2591, 3023, 3024, 3400, 3959, 3960, 5182, 5183, 7920, 9796, 11233, 14883, 15119, 15120, 19593, 21600, 21603, 21604, 22177, 28559, 28560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS David W. Wilson, Table of n, a(n) for n = 1..200 W. C. Mitchell, The number of lattice points in a k-dimensional hypersphere, Math. Comp., 20 (1966), 300-310. MATHEMATICA nmax = 3*10^4; A[n_] := 1 + 4*Floor[Sqrt[n]] + 4*Floor[Sqrt[n/2]]^2 + 8* Sum[Floor[Sqrt[n - j^2]], {j, Floor[Sqrt[n/2]]+1, Floor[Sqrt[n]]}]; V[n_] := Pi*n; P[n_] := A[n] - V[n]; record = 0; A000099 = Reap[For[k = 0; n = 1, n <= nmax, n++, p = Abs[P[n]]; If[p > record, record = p; k++; Sow[n]; Print["a(", k, ") = ", n]; ]]][[2, 1]] (* Jean-François Alcover, Feb 03 2016 *) CROSSREFS Cf. A000323, A000036, A000092, A000413, A000223. Sequence in context: A016029 A018327 A285571 * A039690 A243938 A126105 Adjacent sequences:  A000096 A000097 A000098 * A000100 A000101 A000102 KEYWORD nonn AUTHOR EXTENSIONS Entry revised by N. J. A. Sloane, Jun 26 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 08:42 EST 2018. Contains 318158 sequences. (Running on oeis4.)