login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016029
a(1) = a(2) = 1, a(2n + 1) = 2*a(2n) and a(2n) = 2*a(2n - 1) + (-1)^n.
4
1, 1, 2, 5, 10, 19, 38, 77, 154, 307, 614, 1229, 2458, 4915, 9830, 19661, 39322, 78643, 157286, 314573, 629146, 1258291, 2516582, 5033165, 10066330, 20132659, 40265318, 80530637, 161061274, 322122547, 644245094
OFFSET
1,3
COMMENTS
Row sums of Riordan array ((1+x^3)/(1-x^4), x/(1-x)). - Paul Barry, Oct 08 2007
FORMULA
From Ralf Stephan, Jan 12 2005: (Start)
a(n) = (1/10)*(3*2^n + 3*(-1)^floor(n/2) - (-1)^floor((n+1)/2)).
G.f.: x*(1-x+x^2)/((1-2*x)*(1+x^2)). (End)
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3). - Paul Curtz, Dec 18 2007
From G. C. Greubel, Jul 08 2022: (Start)
a(n) = round( 3*2^(n-1)/5 ).
E.g.f.: (1/10)*(3*exp(2*x) + 4*sin(x) + 2*cos(x) - 5). (End)
MATHEMATICA
LinearRecurrence[{2, -1, 2}, {1, 1, 2}, 31] (* Ray Chandler, Sep 23 2015 *)
PROG
(Magma) [Round(3*2^(n-1)/5): n in [1..41]]; // G. C. Greubel, Jul 08 2022
(SageMath) [(1/10)*(3*2^n + 2*i^n*(((n+1)%2) - 2*i*(n%2))) for n in (1..40)] # G. C. Greubel, Jul 08 2022
CROSSREFS
Sequence in context: A263366 A068035 A304973 * A018327 A285571 A000099
KEYWORD
nonn
STATUS
approved