|
|
A000097
|
|
Number of partitions of n if there are two kinds of 1's and two kinds of 2's.
(Formerly M1361 N0525)
|
|
71
|
|
|
1, 2, 5, 9, 17, 28, 47, 73, 114, 170, 253, 365, 525, 738, 1033, 1422, 1948, 2634, 3545, 4721, 6259, 8227, 10767, 13990, 18105, 23286, 29837, 38028, 48297, 61053, 76926, 96524, 120746, 150487, 187019, 231643, 286152, 352413, 432937, 530383, 648245
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also number of partitions of 2*n with exactly 2 odd parts (offset 1). - Vladeta Jovovic, Jan 12 2005
Also number of transitions from one partition of n+2 to another, where a transition consists of replacing any two parts with their sum. Remove all 1' and 2' from the partition, replacing them with ((number of 2') + 1) and ((number of 1') + (number of 2') + 1); these are the two parts being summed. Number of partitions of n into parts of 2 kinds with at most 2 parts of the second kind, or of n+2 into parts of 2 kinds with exactly 2 parts of the second kind. - Franklin T. Adams-Watters, Mar 20 2006
From Christian Gutschwager (gutschwager(AT)math.uni-hannover.de), Feb 10 2010: (Start)
a(n) is also the number of pairs of partitions of n+2 which differ by only one box (for bijection see Gutschwager link).
a(n) is also the number of partitions of n with two parts marked.
a(n) is also the number of partitions of n+1 with two different parts marked. (End)
a(n) = P(/2,n), a particular case of P(/k,n) defined as follows: P(/0,n) = A000041(n) and P(/k,n) = P(/k-1, n) + P(/k-1,n-k) + P(/k-1, n-2k) + ... Also, P(/k,n) = the convolution of A000041 and the partitions of n with exactly k parts, and g.f. P(/k,n) = (g.f. for P(n)) * 1/(1-x)...(1-x^k). - Gregory L. Simay, Mar 22 2018
a(n) is also the sum of binomial(D(p),2) in partitions p of (n+3), where D(p)= number of different sizes of parts in p. - Emily Anible, Apr 03 2018
Also partitions of 2*(n+1) with alternating sum 2. Also partitions of 2*(n+1) with reverse-alternating sum -2 or 2. - Gus Wiseman, Jun 21 2021
|
|
REFERENCES
|
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
Euler transform of 2 2 1 1 1 1 1...
G.f.: 1/( (1-x) * (1-x^2) * Product_{k>=1} (1-x^k) ).
a(n) = Sum_{j=0..floor(n/2)} A000070(n-2*j), n>=0.
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 35*Pi/(24*sqrt(6*n))). - Vaclav Kotesovec, Aug 18 2015, extended Nov 05 2016
|
|
EXAMPLE
|
a(3) = 9 because we have 3, 2+1, 2+1', 2'+1, 2'+1', 1+1+1, 1+1+1', 1+1'+1' and 1'+1'+1'.
The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with exactly 2 odd parts:
(1,1) (3,1) (3,3) (5,3)
(2,1,1) (5,1) (7,1)
(3,2,1) (3,3,2)
(4,1,1) (4,3,1)
(2,2,1,1) (5,2,1)
(6,1,1)
(3,2,2,1)
(4,2,1,1)
(2,2,2,1,1)
The a(0) = 1 through a(4) = 9 partitions of 2*(n+1) with alternating sum 2:
(2) (3,1) (4,2) (5,3)
(2,1,1) (2,2,2) (3,3,2)
(3,2,1) (4,3,1)
(3,1,1,1) (3,2,2,1)
(2,1,1,1,1) (4,2,1,1)
(2,2,2,1,1)
(3,2,1,1,1)
(3,1,1,1,1,1)
(2,1,1,1,1,1,1)
(End)
|
|
MAPLE
|
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n->`if`(n<3, 2, 1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1 - x) (1 - x^2) Product[1 - x^k, {k, 1, 100}]), {x, 0, 100}], x] (* Ben Branman, Mar 07 2012 *)
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[If[# < 3, 2, 1]&]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 09 2014, after Alois P. Heinz *)
Table[Length@IntegerPartitions[n, All, Join[{1, 2}, Range[n]]], {n, 0, 15}] (* Robert Price, Jul 28 2020 *)
T[n_, 0] := PartitionsP[n];
T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m];
T[_, _] = 0;
a[n_] := T[n + 3, 2];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}]; Table[Length[Select[IntegerPartitions[n], ats[#]==2&]], {n, 0, 30, 2}] (* Gus Wiseman, Jun 21 2021*)
|
|
PROG
|
(PARI) x = 'x + O('x^66); Vec( 1/((1-x)*(1-x^2)*eta(x)) ) \\ Joerg Arndt, Apr 29 2013
|
|
CROSSREFS
|
The case of reverse-alternating sum 1 or alternating sum 0 is A000041.
The case of reverse-alternating sum -1 or alternating sum 1 is A000070.
The case of reverse-alternating sum 2 is A120452.
The case of reverse-alternating sum -2 is A344741.
A001700 counts compositions with alternating sum 2.
A035363 counts partitions into even parts.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
Cf. A006330, A027187, A239830, A306145, A343941, A344607, A344608, A344619, A344650, A344651, A344740.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 04 2004
|
|
STATUS
|
approved
|
|
|
|