The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A058696 Number of ways to partition 2n into positive integers. 77
 1, 2, 5, 11, 22, 42, 77, 135, 231, 385, 627, 1002, 1575, 2436, 3718, 5604, 8349, 12310, 17977, 26015, 37338, 53174, 75175, 105558, 147273, 204226, 281589, 386155, 526823, 715220, 966467, 1300156, 1741630, 2323520, 3087735, 4087968, 5392783, 7089500, 9289091 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A bisection of A000041, the other one is A058695. Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). - Michael Somos, Feb 16 2014 a(n) is the number of partitions of 3n-2 having n as a part, for n >= 1. Also, a(n+1) is the number of partitions of 3n having n as a part, for n >= 1. - Clark Kimberling, Mar 02 2014 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 Roland Bacher and Pierre De La Harpe, Conjugacy growth series of some infinitely generated groups, International Mathematics Research Notices, 2016, pp.1-53. (hal-01285685v2) K. Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7. Álvaro Gutiérrez and Mercedes H. Rosas, Partial symmetries of iterated plethysms, arXiv:2201.00240 [math.CO], 2022. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of f(x^3, x^5) / f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 16 2014 Euler transform of period 16 sequence [ 2, 2, 3, 2, 3, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 1, ...]. - Michael Somos, Apr 25 2003 a(n) = A000041(2*n). Convolution of A000041 and A035294. - Michael Somos, Feb 16 2014 G.f.: Product_{k>=1} (1 + x^(8*k-4)) * (1 + x^(8*k)) * (1 + x^k)^2 / ((1 + x^(8*k-1)) * (1 + x^(8*k-7)) * (1 - x^k)). - Vaclav Kotesovec, Nov 17 2016 a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Feb 16 2022 EXAMPLE G.f. = 1 + 2*x + 5*x^2 + 11*x^3 + 22*x^4 + 42*x^5 + 77*x^6 + 135*x^7 + ... G.f. = q^-1 + 2*q^47 + 5*q^95 + 11*q^143 + 22*q^191 + 42*q^239 + 77*q^287 + ... MAPLE a:= n-> combinat[numbpart](2*n): seq(a(n), n=0..42); # Alois P. Heinz, Jan 29 2020 MATHEMATICA nn=100; Table[CoefficientList[Series[Product[1/(1-x^i), {i, 1, nn}], {x, 0, nn}], x][[2i-1]], {i, 1, nn/2}] (* Geoffrey Critzer, Sep 28 2013 *) (* also *) Table[PartitionsP[2 n], {n, 0, 40}] (* Clark Kimberling, Mar 02 2014 *) (* also *) Table[Count[IntegerPartitions[3 n - 2], p_ /; MemberQ[p, n]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *) nmax = 60; CoefficientList[Series[Product[(1 + x^(8*k-4))*(1 + x^(8*k))*(1 + x^k)^2/((1 + x^(8*k-1))*(1 + x^(8*k-7))*(1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 17 2016 *) PROG (PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(2*n + 1))), 2*n))}; /* Michael Somos, Apr 25 2003 */ (PARI) a(n) = numbpart(2*n); \\ Michel Marcus, Sep 28 2013 (MuPAD) combinat::partitions::count(2*i) \$i=0..54 // Zerinvary Lajos, Apr 16 2007 CROSSREFS Cf. A000041, A035294, A058695. Sequence in context: A290778 A291590 A236430 * A134508 A091357 A309950 Adjacent sequences: A058693 A058694 A058695 * A058697 A058698 A058699 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 31 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 05:10 EST 2023. Contains 367685 sequences. (Running on oeis4.)