login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058696
Number of ways to partition 2n into positive integers.
85
1, 2, 5, 11, 22, 42, 77, 135, 231, 385, 627, 1002, 1575, 2436, 3718, 5604, 8349, 12310, 17977, 26015, 37338, 53174, 75175, 105558, 147273, 204226, 281589, 386155, 526823, 715220, 966467, 1300156, 1741630, 2323520, 3087735, 4087968, 5392783, 7089500, 9289091
OFFSET
0,2
COMMENTS
A bisection of A000041, the other one is A058695.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). - Michael Somos, Feb 16 2014
a(n) is the number of partitions of 3n-2 having n as a part, for n >= 1. Also, a(n+1) is the number of partitions of 3n having n as a part, for n >= 1. - Clark Kimberling, Mar 02 2014
LINKS
Roland Bacher and Pierre De La Harpe, Conjugacy growth series of some infinitely generated groups, International Mathematics Research Notices, 2016, pp.1-53. (hal-01285685v2)
K. Blum, Bounds on the Number of Graphical Partitions, arXiv:2103.03196 [math.CO], 2021. See Table on p. 7.
Álvaro Gutiérrez and Mercedes H. Rosas, Partial symmetries of iterated plethysms, arXiv:2201.00240 [math.CO], 2022.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x^3, x^5) / f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 16 2014
Euler transform of period 16 sequence [ 2, 2, 3, 2, 3, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 1, ...]. - Michael Somos, Apr 25 2003
a(n) = A000041(2*n).
Convolution of A000041 and A035294. - Michael Somos, Feb 16 2014
G.f.: Product_{k>=1} (1 + x^(8*k-4)) * (1 + x^(8*k)) * (1 + x^k)^2 / ((1 + x^(8*k-1)) * (1 + x^(8*k-7)) * (1 - x^k)). - Vaclav Kotesovec, Nov 17 2016
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Feb 16 2022
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 11*x^3 + 22*x^4 + 42*x^5 + 77*x^6 + 135*x^7 + ...
G.f. = q^-1 + 2*q^47 + 5*q^95 + 11*q^143 + 22*q^191 + 42*q^239 + 77*q^287 + ...
MAPLE
a:= n-> combinat[numbpart](2*n):
seq(a(n), n=0..42); # Alois P. Heinz, Jan 29 2020
MATHEMATICA
nn=100; Table[CoefficientList[Series[Product[1/(1-x^i), {i, 1, nn}], {x, 0, nn}], x][[2i-1]], {i, 1, nn/2}] (* Geoffrey Critzer, Sep 28 2013 *)
(* also *)
Table[PartitionsP[2 n], {n, 0, 40}] (* Clark Kimberling, Mar 02 2014 *)
(* also *)
Table[Count[IntegerPartitions[3 n - 2], p_ /; MemberQ[p, n]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *)
nmax = 60; CoefficientList[Series[Product[(1 + x^(8*k-4))*(1 + x^(8*k))*(1 + x^k)^2/((1 + x^(8*k-1))*(1 + x^(8*k-7))*(1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 17 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(2*n + 1))), 2*n))}; /* Michael Somos, Apr 25 2003 */
(PARI) a(n) = numbpart(2*n); \\ Michel Marcus, Sep 28 2013
(MuPAD) combinat::partitions::count(2*i) $i=0..54 // Zerinvary Lajos, Apr 16 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2000
STATUS
approved