login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058698
a(n) = p(P(n)), P = primes (A000040), p = partition numbers (A000041).
22
2, 3, 7, 15, 56, 101, 297, 490, 1255, 4565, 6842, 21637, 44583, 63261, 124754, 329931, 831820, 1121505, 2679689, 4697205, 6185689, 13848650, 23338469, 49995925, 133230930, 214481126, 271248950, 431149389, 541946240, 851376628, 3913864295, 5964539504, 11097645016
OFFSET
1,1
COMMENTS
Number of partitions of n-th prime. - Omar E. Pol, Aug 05 2011
LINKS
FORMULA
a(n) = A000041(A000040(n)). - Omar E. Pol, Aug 05 2011
EXAMPLE
a(2) = 3 because the second prime is 3 and there are three partitions of 3: {1, 1, 1}, {1, 2}, {3}.
MATHEMATICA
Table[PartitionsP[Prime[n]], {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008 *)
PROG
(Haskell)
import Data.MemoCombinators (memo2, integral)
a058698 n = a058698_list !! (n-1)
a058698_list = map (pMemo 1) a000040_list where
pMemo = memo2 integral integral p
p _ 0 = 1
p k m | m < k = 0
| otherwise = pMemo k (m - k) + pMemo (k + 1) m
-- Reinhard Zumkeller, Aug 09 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2000
STATUS
approved