OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). - Michael Somos, Feb 16 2014
a(n) is the number of partitions of 3n-1 having n as a part, for n >=1. Also, a(n+1) is the number of partitions of 3n having n as a part, for n >= 1. - Clark Kimberling, Mar 02 2014
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Robert Israel)
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = A000041(2*n + 1).
Euler transform of period 16 sequence [ 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, ...]. - Michael Somos, Apr 25 2003
G.f.: (Sum_{k>=0} x^A074377(k)) / (Product_{k>0} (1 - x^k))^2. - Michael Somos, Apr 25 2003
Expansion of f(x^1, x^7) / f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 16 2014
EXAMPLE
G.f. = 1 + 3*x + 7*x^2 + 15*x^3 + 30*x^4 + 56*x^5 + 101*x^6 + 176*x^7 + 297*x^8 + ...
G.f. = q^23 + 3*q^71 + 7*q^119 + 15*q^167 + 30*q^215 + 56*q^263 + 101*q^311 + ...
MAPLE
a:= n-> combinat[numbpart](2*n+1):
seq(a(n), n=0..42); # Alois P. Heinz, Jan 29 2020
MATHEMATICA
nn=100; Table[CoefficientList[Series[Product[1/(1-x^i), {i, 1, nn}], {x, 0, nn}], x][[2i]], {i, 1, nn/2}] (* Geoffrey Critzer, Sep 28 2013 *)
(* also *)
Table[PartitionsP[2 n + 1], {n, 0, 40}] (* Clark Kimberling, Mar 02 2014 *)
(* also *)
Table[Count[IntegerPartitions[3 n - 1], p_ /; MemberQ[p, n]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(2*n + 2))), 2*n + 1))}; /* Michael Somos, Apr 25 2003 */
(PARI) a(n) = numbpart(2*n+1); \\ Michel Marcus, Sep 28 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2000
STATUS
approved