login
A058695
Number of ways to partition 2n+1 into positive integers.
59
1, 3, 7, 15, 30, 56, 101, 176, 297, 490, 792, 1255, 1958, 3010, 4565, 6842, 10143, 14883, 21637, 31185, 44583, 63261, 89134, 124754, 173525, 239943, 329931, 451276, 614154, 831820, 1121505, 1505499, 2012558, 2679689, 3554345, 4697205, 6185689, 8118264, 10619863
OFFSET
0,2
COMMENTS
A bisection of A000041, the other one is A058696.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). - Michael Somos, Feb 16 2014
a(n) is the number of partitions of 3n-1 having n as a part, for n >=1. Also, a(n+1) is the number of partitions of 3n having n as a part, for n >= 1. - Clark Kimberling, Mar 02 2014
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..2000 from Robert Israel)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = A000041(2*n + 1).
Euler transform of period 16 sequence [ 3, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 1, 3, 1, ...]. - Michael Somos, Apr 25 2003
G.f.: (Sum_{k>=0} x^A074377(k)) / (Product_{k>0} (1 - x^k))^2. - Michael Somos, Apr 25 2003
Expansion of f(x^1, x^7) / f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, Feb 16 2014
Convolution of A000041 and A078408. - Michael Somos, Feb 16 2014
EXAMPLE
G.f. = 1 + 3*x + 7*x^2 + 15*x^3 + 30*x^4 + 56*x^5 + 101*x^6 + 176*x^7 + 297*x^8 + ...
G.f. = q^23 + 3*q^71 + 7*q^119 + 15*q^167 + 30*q^215 + 56*q^263 + 101*q^311 + ...
MAPLE
a:= n-> combinat[numbpart](2*n+1):
seq(a(n), n=0..42); # Alois P. Heinz, Jan 29 2020
MATHEMATICA
nn=100; Table[CoefficientList[Series[Product[1/(1-x^i), {i, 1, nn}], {x, 0, nn}], x][[2i]], {i, 1, nn/2}] (* Geoffrey Critzer, Sep 28 2013 *)
(* also *)
Table[PartitionsP[2 n + 1], {n, 0, 40}] (* Clark Kimberling, Mar 02 2014 *)
(* also *)
Table[Count[IntegerPartitions[3 n - 1], p_ /; MemberQ[p, n]], {n, 20}] (* Clark Kimberling, Mar 02 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + O(x^(2*n + 2))), 2*n + 1))}; /* Michael Somos, Apr 25 2003 */
(PARI) a(n) = numbpart(2*n+1); \\ Michel Marcus, Sep 28 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 31 2000
STATUS
approved