login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058692
a(n) = B(n) - 1, where B(n) = Bell numbers, A000110.
14
1, 4, 14, 51, 202, 876, 4139, 21146, 115974, 678569, 4213596, 27644436, 190899321, 1382958544, 10480142146, 82864869803, 682076806158, 5832742205056, 51724158235371, 474869816156750, 4506715738447322, 44152005855084345
OFFSET
2,2
LINKS
W. M. B. Dukes, Tables of matroids.
W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
FORMULA
G.f.: Sum_{k > 1} x^k / ((1 - x) * (1 - x^2) * ... * (1 - x^k)). - Michael Somos, Feb 26 2014
E.g.f.: exp(exp(x) - 1) - exp(x). - Ilya Gutkovskiy, Feb 08 2020
EXAMPLE
G.f. = x^2 + 4*x^3 + 14*x^4 + 51*x^5 + 202*x^6 + 876*x^7 + 4139*x^8 + ...
MATHEMATICA
Table[BellB[n, 1] - 1, {n, 2, 23}] (* Zerinvary Lajos, Jul 16 2009 *)
PROG
(Magma) [Bell(n)-1: n in [2..30]]; // Vincenzo Librandi, Mar 04 2014
CROSSREFS
Column k=2 of both A058710 and A058711 (which are the same except for column k=0).
Cf. A000110.
Sequence in context: A292463 A371870 A149488 * A165813 A253199 A198279
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 30 2000
STATUS
approved