OFFSET
-1,4
COMMENTS
Also McKay-Thompson series of class 47B for Monster. - Michel Marcus, Feb 24 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (47 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 06 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1500
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
David A. Madore, Coefficients of Moonshine (McKay-Thompson) series, The Math Forum
FORMULA
a(n) ~ exp(4*Pi*sqrt(n/47)) / (sqrt(2) * 47^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 06 2018
Expansion of (eta(q^2)^7 * eta(q^8)^2 * eta(q^94)^7 * eta(q^376)^2 - 2 * eta(q) * eta(q^2)^4 * eta(q^4)^2 * eta(q^8)^2 * eta(q^47) * eta(q^94)^4 * eta(q^188)^2 * eta(q^376)^2 - eta(q)^2* eta(q^4) * eta(q^47)^2 * eta(q^188) * (eta(q^4)^3 * eta(q^188)^3 - 2 * eta(q^2) * eta(q^8)^2 * eta(q^94)* eta(q^376)^2)^2)/ (2 * eta(q)^3 * eta(q^2)^2 * eta(q^4)^2 * eta(q^8)^2 * eta(q^47)^3 * eta(q^94)^2 * eta(q^188)^2 * eta(q^376)^2) in powers of q. - Michael Somos, Jan 24 2023
EXAMPLE
T47A = 1/q + q + 2*q^2 + 3*q^3 + 3*q^4 + 5*q^5 + 5*q^6 + 8*q^7 + 9*q^8 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; Theta[a_, b_, c_]:= Sum[q^((a*n^2 + b*n*m + c*m^2)/2), {n, -50, 50}, {m, -50, 50}]; a:= CoefficientList[ Series[q*(Theta[2, 2, 24] - Theta[4, 2, 12])/(2*eta[q]*eta[q^47]), {q, 0, 100}], q]; Table[a[[n]], {n, 1, 80}] (* G. C. Greubel, Jul 05 2018 *)
a[ n_] := With[ {T1 = QPochhammer[ q^#] QPochhammer[ q^(47 #)] &, T2 = EllipticTheta[ 2, 0, q^#] EllipticTheta[ 2, 0, q^(47 #)] &, T3 = EllipticTheta[ 3, 0, q^#] EllipticTheta[ 3, 0, q^(47 #)] &}, SeriesCoefficient[ (T3[1] + T2[1]- T3[2] - T2[2] - T2[1/2]/2) / (2 q^2 T1[1]), {q, 0, n}]]; (* Michael Somos, Sep 07 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( Ser( Vec( qfrep([2, 1; 1, 24], n+1, 1)) - Vec(qfrep([4, 1; 1, 12], n+1, 1))) / (eta(x + A) * eta(x^47 + A)), n))}; /* Michael Somos, Sep 06 2018 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 24 2014
STATUS
approved