The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055795 a(n) = binomial(n,4) + binomial(n,2). 16
 0, 1, 3, 7, 15, 30, 56, 98, 162, 255, 385, 561, 793, 1092, 1470, 1940, 2516, 3213, 4047, 5035, 6195, 7546, 9108, 10902, 12950, 15275, 17901, 20853, 24157, 27840, 31930, 36456, 41448, 46937, 52955, 59535, 66711, 74518, 82992, 92170, 102090, 112791, 124313, 136697 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Answer to the question: if you have a tall building and 4 plates and you need to find the highest story from which a plate thrown does not break, what is the number of stories you can handle given n tries? If Y is a 2-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X which have no exactly one element in common with Y. - Milan Janjic, Dec 28 2007 Antidiagonal sums of A139600. - Johannes W. Meijer, Apr 29 2011 Also the number of maximal cliques in the n-tetrahedral graph for n > 5. - Eric W. Weisstein, Jun 12 2017 Mark each point on an 8^(n-2) grid with the number of points that are visible from the point; for n > 3, a(n) is the number of distinct values in the grid. - Torlach Rush, Mar 25 2021 LINKS James Spahlinger, Table of n, a(n) for n = 1..1000 Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. Milan Janjic, Two Enumerative Functions Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7 Eric Weisstein's World of Mathematics, Johnson Graph Eric Weisstein's World of Mathematics, Maximal Clique Eric Weisstein's World of Mathematics, Tetrahedral Graph Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = A000127(n)-1. Differences give A000127. a(1) = 1; a(n) = a(n-1) + 1 + A004006(n-1). a(n+1) = C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4). - James A. Sellers, Mar 16 2002 Row sums of triangle A134394. Also, binomial transform of [1, 2, 2, 2, 1, 0, 0, 0,...]. - Gary W. Adamson, Oct 23 2007 O.g.f.: -x^2(1-2x+2x^2)/(x-1)^5. a(n) = A000332(n) + A000217(n-1). - R. J. Mathar, Apr 13 2008 a(n) = n*(n^3 - 6*n^2 + 23*n - 18)/24. - Gary Detlefs, Dec 08 2011 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=0, a(2)=1, a(3)=3, a(4)=7, a(5)=15. - Harvey P. Dale, Dec 07 2015 MAPLE A055795:=n->binomial(n, 4)+binomial(n, 2); # Zerinvary Lajos, Jul 24 2006 MATHEMATICA Table[Binomial[n, 4] + Binomial[n, 2], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *) Table[n (n^3 - 6 n^2 + 23 n - 18)/24, {n, 100}] (* Wesley Ivan Hurt, Sep 29 2013 *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 3, 7, 15}, 50] (* Harvey P. Dale, Dec 07 2015 *) Total[Binomial[Range, #] & /@ {2, 4}] (* Eric W. Weisstein, Dec 01 2017 *) CoefficientList[Series[x (-1 + 2 x - 2 x^2)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017~ *) PROG (MAGMA) [n*(n^3-6*n^2+23*n-18)/24: n in [1..100]]; // Wesley Ivan Hurt, Sep 29 2013 (Maxima) A055795(n):=n*(n^3-6*n^2+23*n-18)/24\$ makelist(A055795(n), n, 1, 100); /* Wesley Ivan Hurt, Sep 29 2013 */ (PARI) a(n)= n*(n^3-6*n^2+23*n-18)/24 \\ Wesley Ivan Hurt, Sep 29 2013 CROSSREFS T(2n+1, n), array T as in A055794. Cf. A004006, A000127. Cf. A134394, A051601. Sequence in context: A153114 A325664 A290865 * A058695 A228447 A187100 Adjacent sequences:  A055792 A055793 A055794 * A055796 A055797 A055798 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 28 2000 EXTENSIONS Better description from Leonid Broukhis, Oct 24 2000 Edited by Zerinvary Lajos, Jul 24 2006 Offset corrected and Sellers formula adjusted by Gary Detlefs, Nov 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 19:46 EDT 2021. Contains 343951 sequences. (Running on oeis4.)