login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093695
Number of one-element transitions among partitions of the integer n for unlabeled parts.
9
0, 0, 2, 4, 10, 18, 34, 56, 94, 146, 228, 340, 506, 730, 1050, 1476, 2066, 2844, 3896, 5268, 7090, 9442, 12518, 16454, 21534, 27980, 36210, 46572, 59674, 76056, 96594, 122106, 153852, 193048, 241492, 300974, 374038, 463286, 572304, 704826, 865874, 1060766
OFFSET
0,3
COMMENTS
It appears that a(n) = 2 * A000097(n-2). - George Beck, Sep 05 2014
It appears that a(n) = A135348(n+1) - A000070(n). - Thomas Baruchel, May 12 2018
LINKS
FORMULA
a(n) = Sum_p=1^P(n) Sum_i=1^D(p) Sum_j=1^D(p) 1 [subject to: i <> j and d(i,p) <= d(j,p) and d(i,p) <> d(i-1,p) (if i > 1) and d(j,i) <> d(j-1,i) (if j > 1 and if d(j-1,p) has given a contribution to the sum) ]; P(n) = number of partitions of n, D(p) = number of digits in partition p, d(i,p) and d(j,p) = digits number i and j in partition p of integer n.
See the corresponding formula for a(n) for the labeled case A094533.
a(n) = Sum_i=1^P(n+1) S(i, n+1)^2 - S(i, n+1), where P(n+1) is the number of integer partitions of n+1 and S(i, n+1) is the number of digits in the set of digits of the i-th partition of n+1. (E.g. the partition [1111233] has the set of digits {1, 2, 3} and would contribute 3^2 - 3 = 6 to the sum.)
G.f.: 2*x^2 / (x^3-x^2-x+1) * Product_{m>=1} (1/(1-x^m)) (conjectured). - Thomas Baruchel, May 12 2018
EXAMPLE
In the unlabeled case we have 10 one-element transitions among all partitions of n=4: [1,1,1,1] -> [1,1,2]; [1,1,2] -> [2,2]; [1,1,2] -> [1,3]; [2,2] -> [1,3]; [1,3] -> [4] and [1,1,2] -> [1,1,1,1]; [2,2] -> [1,1,2]; [1,3] -> [1,1,2]; [1,3] -> [2,2]; [4] -> [1,3].
n=5:
partition number p=1 is [1,1,1,1,1], digits d(1,1)=1, d(2,1)=1 contribute 1;
partition number p=2 is [1,1,1,2], digits d(1,1)=1, d(2,2)=1 contribute 1, digits d(1,2)=2, d(4,2)=2 contribute 1;
partition number p=3 is [1,2,2], digits d(1,3)=1, d(2,3)=2 contribute 1, digits d(2,3)=2, d(3,3)=2 contribute 1;
partition number p=4 is [1,1,3], digits d(1,4)=1, d(2,4)=1 contribute 1, digits d(1,4)=1, d(3,4)=3 contribute 1;
partition number p=5 is [2,3], digits d(1,5)=2, d(2,5)=3 contribute 1;
partition number p=6 is [1,4], digits d(1,6)=1, d(2,6)=4 contribute 1;
partition number p=7 is [5], digits d(1,7)=5 contributes 0;
==> a(5)=2*9=18 (factor 2 if we accept up and down transitions).
a(5) = 18 because the 11 partitions of n=5+1=6 have the following sets of digits:
{1} contributes 0, {1, 2} contributes 2, {1, 2} contributes 2,
{2} contributes 0, {1, 3} contributes 2, {1, 2, 3} contributes 6,
{3} contributes 0, {1, 4} contributes 2, {2, 4} contributes 2,
{1, 5} contributes 2, {6} contributes 0,
which gives 0 + 2 + 2 + 0 + 2 + 6 + 0 + 2 + 2 + 2 + 0 = 18.
G.f. = 2*x^2 + 4*x^3 + 10*x^4 + 18*x^5 + 34*x^6 + 56*x^7 + 94*x^8 + ...
MAPLE
A093695 := proc(n::integer) local a, ndxp, ListOfPartitions, APartition, PartOfAPartition, SetOfParts, iverbose; with(combinat): iverbose:=1; ListOfPartitions:=partition(n+1); a:=0; for ndxp from 1 to nops(ListOfPartitions) do APartition := ListOfPartitions[ndxp]; SetOfParts := convert(APartition, set); a := a + nops(SetOfParts)^2 - nops(SetOfParts); if iverbose = 1 then print ("ndxp, SetOfParts, nops(SetOfParts)^2 - nops(SetOfParts): ", ndxp, SetOfParts, nops(SetOfParts)^2 - nops(SetOfParts)); fi; # End of do-loop *** ndxp ***. end do; print("n, a(n):", n, a); end proc;
# second Maple program
b:= proc(n, i) option remember; local j, f, g;
if n=0 then [0]
elif i=1 then [1]
else f:= b(n, i-1);
for j to floor(n/i) do f:= zip((x, y)-> x+y,
f, `if`(n=i*j, [1], [0, b(n-i*j, i-1)[]]), 0)
od; f
fi
end:
a:= n-> (l-> add(i*(i-1)*l[i], i=1..nops(l)))(b(n+1, n+1)):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 05 2012
MATHEMATICA
a[n_] := Block[{p = IntegerPartitions[n + 1], l = PartitionsP[n + 1]}, Sum[ Length[ Union[ p[[k]]]]^2 - Length[ Union[ p[[k]] ]], {k, l}]]; Table[ a[n], {n, 0, 40}] (* Robert G. Wilson v, Jul 13 2004, updated by Jean-François Alcover, Jan 29 2014 *)
CROSSREFS
Cf. A094533.
Column k=2 of triangle A322210.
Sequence in context: A375625 A045955 A182248 * A308529 A320098 A320968
KEYWORD
nonn
AUTHOR
Thomas Wieder, Apr 10 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jul 13 2004
STATUS
approved