The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322210 G.f.: P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)), where P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k, as a square table of coefficients T(n,k) read by antidiagonals. 7
 1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 10, 7, 5, 7, 12, 18, 18, 12, 7, 11, 19, 34, 38, 34, 19, 11, 15, 30, 56, 74, 74, 56, 30, 15, 22, 45, 94, 133, 158, 133, 94, 45, 22, 30, 67, 146, 233, 297, 297, 233, 146, 67, 30, 42, 97, 228, 385, 550, 602, 550, 385, 228, 97, 42, 56, 139, 340, 623, 951, 1166, 1166, 951, 623, 340, 139, 56 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Conjecture 1: the triangular table T(n,k) is the number of ways to form the subsum k from the partitions of n, where n and k are integers such that 0 <= k <= n. For example, t(4,2)=10; the five partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1) with subsum 2 occurring {0,0,2,2,6) times for a total of 10. - George Beck, Jan 03 2020 From Wouter Meeussen, Mar 09 2023: (Start) Conjecture 2: the square table T(n,k) is the coefficient of s_lambda in the sum over all partitions lambda |-n and nu |-k of (s_rho/mu) where s_lambda*s_mu = Sum(rho|-n+k; C(rho, lambda, mu) s_rho). Simply stated as: multiply lambda with mu, and, for each term in the result, take the skew Schur function with mu and count how often you get the original lambda back. Sum up over all lambda and mu of the size n and k. Conjecture 3: the triangular table T(n,k) is analogous to conjecture 2, but counting s_lambda in s_(lambda/mu) * s_mu with lambda |- n and mu |- k and 0<=k<=n. (End) LINKS Alois P. Heinz, Antidiagonals n = 0..200 (first 61 antidiagonals from Paul D. Hanna) FORMULA FORMULAS FOR TERMS. T(n,k) = T(k,n) for n >= 0, k >= 0. T(n,0) = A000041(n) for n >= 0, where A000041 is the partition numbers. T(n,1) = A000070(n) for n >= 0, where A000070 is the sum of partitions. ROW GENERATING FUNCTIONS. Row 0: 1/( Product_{n>=1} (1 - x^n) ). Row 1: 1/( (1-x) * Product_{n>=1} (1 - x^n) ). Row 2: 2/( (1-x) * (1-x^2) * Product_{n>=1} (1 - x^n) ). EXAMPLE G.f.: P(x,y) = 1 + (x + y) + (2*x^2 + 2*x*y + 2*y^2) + (3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3) + (5*x^4 + 7*x^3*y + 10*x^2*y^2 + 7*x*y^3 + 5*y^4) + (7*x^5 + 12*x^4*y + 18*x^3*y^2 + 18*x^2*y^3 + 12*x*y^4 + 7*y^5) + (11*x^6 +19*x^5*y + 34*x^4*y^2 + 38*x^3*y^3 + 34*x^2*y^4 + 19*x*y^5 + 11*y^6) + (15*x^7 + 30*x^6*y + 56*x^5*y^2 + 74*x^4*y^3 + 74*x^3*y^4 + 56*x^2*y^5 + 30*x*y^6 + 15*y^7) + (22*x^8 + 45*x^7*y + 94*x^6*y^2 + 133*x^5*y^3 + 158*x^4*y^4 + 133*x^3*y^5 + 94*x^2*y^6 + 45*x*y^7 + 22*y^8) + ... such that P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)), where P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k. SQUARE TABLE. The square table of coefficients T(n,k) of x^n*y^k in P(x,y) begins 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ...; 1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, ...; 2, 4, 10, 18, 34, 56, 94, 146, 228, 340, 506, 730, ...; 3, 7, 18, 38, 74, 133, 233, 385, 623, 977, 1501, 2255, ...; 5, 12, 34, 74, 158, 297, 550, 951, 1614, 2627, 4202, 6531, ...; 7, 19, 56, 133, 297, 602, 1166, 2133, 3775, 6437, 10692, ...; 11, 30, 94, 233, 550, 1166, 2382, 4551, 8424, 14953, 25835, ...; 15, 45, 146, 385, 951, 2133, 4551, 9142, 17639, 32680, ...; 22, 67, 228, 623, 1614, 3775, 8424, 17639, 35492, 68356, ...; 30, 97, 340, 977, 2627, 6437, 14953, 32680, 68356, 136936, ...; 42, 139, 506, 1501, 4202, 10692, 25835, 58659, 127443, 264747, ...; 56, 195, 730, 2255, 6531, 17290, 43313, 102149, 229998, 495195, ...; ... TRIANGLE. Alternatively, this sequence may be written as a triangle, starting as 1; 1, 1; 2, 2, 2; 3, 4, 4, 3; 5, 7, 10, 7, 5; 7, 12, 18, 18, 12, 7; 11, 19, 34, 38, 34, 19, 11; 15, 30, 56, 74, 74, 56, 30, 15; 22, 45, 94, 133, 158, 133, 94, 45, 22; 30, 67, 146, 233, 297, 297, 233, 146, 67, 30; 42, 97, 228, 385, 550, 602, 550, 385, 228, 97, 42; 56, 139, 340, 623, 951, 1166, 1166, 951, 623, 340, 139, 56; 77, 195, 506, 977, 1614, 2133, 2382, 2133, 1614, 977, 506, 195, 77; ... MAPLE b:= proc(n, i) option remember; expand(`if`(n=0 or i=1, (x+1)^n, b(n, i-1) +(x^i+1)*b(n-i, min(n-i, i)))) end: T:= (n, k)-> coeff(b(n+k\$2), x, k): seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 23 2019 MATHEMATICA b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (x + 1)^n, b[n, i - 1] + (x^i + 1) b[n - i, Min[n - i, i]]]]; T[n_, k_] := Coefficient[b[n + k, n + k], x, k]; Table[Table[T[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *) PROG (PARI) {P = 1/prod(n=1, 61, (1 - (x^n + y^n) +O(x^61) +O(y^61)) ); } {T(n, k) = polcoeff( polcoeff( P, n, x), k, y)} for(n=0, 16, for(k=0, 16, print1( T(n, k), ", ") ); print("")) CROSSREFS Cf. A322200 (log), A322211 (main diagonal). Cf. A000041 (row 0 = partitions), A000070 (row 1), A093695(k+2) (row 2). Antidiagonal sums give A070933. Cf. A284593. Cf. A361286 Sequence in context: A074829 A060243 A054225 * A228482 A091822 A358178 Adjacent sequences: A322207 A322208 A322209 * A322211 A322212 A322213 KEYWORD nonn,tabl,changed AUTHOR Paul D. Hanna, Nov 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 17:51 EDT 2023. Contains 361599 sequences. (Running on oeis4.)