OFFSET
0,4
COMMENTS
Conjecture 1: the triangular table T(n,k) is the number of ways to form the subsum k from the partitions of n, where n and k are integers such that 0 <= k <= n. For example, t(4,2)=10; the five partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1) with subsum 2 occurring {0,0,2,2,6) times for a total of 10. - George Beck, Jan 03 2020
From Wouter Meeussen, Mar 09 2023: (Start)
Conjecture 2: the square table T(n,k) is the coefficient of s_lambda in the sum over all partitions lambda |-n and nu |-k of (s_rho/mu) where s_lambda*s_mu = Sum(rho|-n+k; C(rho, lambda, mu) s_rho). Simply stated as: multiply lambda with mu, and, for each term in the result, take the skew Schur function with mu and count how often you get the original lambda back. Sum up over all lambda and mu of the size n and k.
Conjecture 3: the triangular table T(n,k) is analogous to conjecture 2, but counting s_lambda in s_(lambda/mu) * s_mu with lambda |- n and mu |- k and 0<=k<=n. (End)
LINKS
Alois P. Heinz, Antidiagonals n = 0..200 (first 61 antidiagonals from Paul D. Hanna)
FORMULA
FORMULAS FOR TERMS.
T(n,k) = T(k,n) for n >= 0, k >= 0.
ROW GENERATING FUNCTIONS.
Row 0: 1/( Product_{n>=1} (1 - x^n) ).
Row 1: 1/( (1-x) * Product_{n>=1} (1 - x^n) ).
Row 2: 2/( (1-x) * (1-x^2) * Product_{n>=1} (1 - x^n) ).
EXAMPLE
G.f.: P(x,y) = 1 + (x + y) + (2*x^2 + 2*x*y + 2*y^2) + (3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3) + (5*x^4 + 7*x^3*y + 10*x^2*y^2 + 7*x*y^3 + 5*y^4) + (7*x^5 + 12*x^4*y + 18*x^3*y^2 + 18*x^2*y^3 + 12*x*y^4 + 7*y^5) + (11*x^6 +19*x^5*y + 34*x^4*y^2 + 38*x^3*y^3 + 34*x^2*y^4 + 19*x*y^5 + 11*y^6) + (15*x^7 + 30*x^6*y + 56*x^5*y^2 + 74*x^4*y^3 + 74*x^3*y^4 + 56*x^2*y^5 + 30*x*y^6 + 15*y^7) + (22*x^8 + 45*x^7*y + 94*x^6*y^2 + 133*x^5*y^3 + 158*x^4*y^4 + 133*x^3*y^5 + 94*x^2*y^6 + 45*x*y^7 + 22*y^8) + ...
such that
P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)),
where
P(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k.
SQUARE TABLE.
The square table of coefficients T(n,k) of x^n*y^k in P(x,y) begins
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ...;
1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, ...;
2, 4, 10, 18, 34, 56, 94, 146, 228, 340, 506, 730, ...;
3, 7, 18, 38, 74, 133, 233, 385, 623, 977, 1501, 2255, ...;
5, 12, 34, 74, 158, 297, 550, 951, 1614, 2627, 4202, 6531, ...;
7, 19, 56, 133, 297, 602, 1166, 2133, 3775, 6437, 10692, ...;
11, 30, 94, 233, 550, 1166, 2382, 4551, 8424, 14953, 25835, ...;
15, 45, 146, 385, 951, 2133, 4551, 9142, 17639, 32680, ...;
22, 67, 228, 623, 1614, 3775, 8424, 17639, 35492, 68356, ...;
30, 97, 340, 977, 2627, 6437, 14953, 32680, 68356, 136936, ...;
42, 139, 506, 1501, 4202, 10692, 25835, 58659, 127443, 264747, ...;
56, 195, 730, 2255, 6531, 17290, 43313, 102149, 229998, 495195, ...;
...
TRIANGLE.
Alternatively, this sequence may be written as a triangle, starting as
1;
1, 1;
2, 2, 2;
3, 4, 4, 3;
5, 7, 10, 7, 5;
7, 12, 18, 18, 12, 7;
11, 19, 34, 38, 34, 19, 11;
15, 30, 56, 74, 74, 56, 30, 15;
22, 45, 94, 133, 158, 133, 94, 45, 22;
30, 67, 146, 233, 297, 297, 233, 146, 67, 30;
42, 97, 228, 385, 550, 602, 550, 385, 228, 97, 42;
56, 139, 340, 623, 951, 1166, 1166, 951, 623, 340, 139, 56;
77, 195, 506, 977, 1614, 2133, 2382, 2133, 1614, 977, 506, 195, 77;
...
MAPLE
b:= proc(n, i) option remember; expand(`if`(n=0 or i=1,
(x+1)^n, b(n, i-1) +(x^i+1)*b(n-i, min(n-i, i))))
end:
T:= (n, k)-> coeff(b(n+k$2), x, k):
seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Aug 23 2019
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0 || i == 1, (x + 1)^n, b[n, i - 1] + (x^i + 1) b[n - i, Min[n - i, i]]]];
T[n_, k_] := Coefficient[b[n + k, n + k], x, k];
Table[Table[T[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)
PROG
(PARI)
{P = 1/prod(n=1, 61, (1 - (x^n + y^n) +O(x^61) +O(y^61)) ); }
{T(n, k) = polcoeff( polcoeff( P, n, x), k, y)}
for(n=0, 16, for(k=0, 16, print1( T(n, k), ", ") ); print(""))
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 30 2018
STATUS
approved