login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322211
a(n) = coefficient of x^n*y^n in Product_{n>=1} 1/(1 - (x^n + y^n)).
6
1, 2, 10, 38, 158, 602, 2382, 9142, 35492, 136936, 530404, 2053848, 7972272, 30977742, 120576112, 469915012, 1833813534, 7164469910, 28021000340, 109699469798, 429850240742, 1685728936622, 6615913739206, 25983523253950, 102115250446680, 401557335718522, 1579978592844064, 6219928993470190, 24498287876663618, 96535916978924934, 380568644820360668
OFFSET
0,2
COMMENTS
Number of subsets of partitions of 2n that have sum n. Olivier Gérard, May 07 2020
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..500 (previous b-file of terms 0..50 supplied by Vaclav Kotesovec).
FORMULA
Main diagonal of square table A322210.
a(n) ~ c * 4^n / sqrt(Pi*n), where c = 1 / A048651 = 1 / Product_{k>=1} (1 - 1/2^k) = 3.46274661945506361153795734292443116454075790290443839... - Vaclav Kotesovec, Dec 23 2018
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 38*x^3 + 158*x^4 + 602*x^5 + 2382*x^6 + 9142*x^7 + 35492*x^8 + 136936*x^9 + 530404*x^10 + 2053848*x^11 + 7972272*x^12 + ...
RELATED SERIES.
The product P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)) begins
P(x,y) = 1 + (x + y) + (2*x^2 + 2*x*y + 2*y^2) + (3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3) + (5*x^4 + 7*x^3*y + 10*x^2*y^2 + 7*x*y^3 + 5*y^4) + (7*x^5 + 12*x^4*y + 18*x^3*y^2 + 18*x^2*y^3 + 12*x*y^4 + 7*y^5) + (11*x^6 + 19*x^5*y + 34*x^4*y^2 + 38*x^3*y^3 + 34*x^2*y^4 + 19*x*y^5 + 11*y^6) + (15*x^7 + 30*x^6*y + 56*x^5*y^2 + 74*x^4*y^3 + 74*x^3*y^4 + 56*x^2*y^5 + 30*x*y^6 + 15*y^7) + (22*x^8 + 45*x^7*y + 94*x^6*y^2 + 133*x^5*y^3 + 158*x^4*y^4 + 133*x^3*y^5 + 94*x^2*y^6 + 45*x*y^7 + 22*y^8) + ...
in which this sequence equals the coefficients of x^n*y^n for n >= 0.
The logarithm of the g.f. begins
log( A(x) ) = 2*x + 16*x^2/2 + 62*x^3/3 + 272*x^4/4 + 922*x^5/5 + 3640*x^6/6 + 12966*x^7/7 + 49872*x^8/8 + 190340*x^9/9 + 745316*x^10/10 + 2928136*x^11/11 + 11602184*x^12/12 + ...
MATHEMATICA
nmax = 20; s = Series[Product[1/(1 - (x^k + y^k)), {k, 1, nmax}], {x, 0, nmax}, {y, 0, nmax}]; Flatten[{1, Table[Coefficient[s, x^n*y^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Dec 04 2018 *)
PROG
(PARI)
{P = 1/prod(n=1, 61, (1 - (x^n + y^n) +O(x^61) +O(y^61)) ); }
{a(n) = polcoeff( polcoeff( P, n, x), n, y)}
for(n=0, 35, print1( a(n), ", ") )
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 30 2018
STATUS
approved