login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166898
G.f.: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4 * x^k] * x^n/n ), an integer series in x.
5
1, 1, 2, 10, 38, 137, 646, 3241, 15623, 79439, 427562, 2317396, 12715372, 71543343, 408543758, 2353591560, 13717994046, 80827739181, 480016288156, 2871701561720, 17304832805996, 104933348346951, 639814473417775
OFFSET
0,3
FORMULA
G.f.: exp( Sum_{n>=1} A166899(n)*x^n/n ) where A166899(n) = Sum_{k=0..[n/2]} C(n-k,k)^4*n/(n-k).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 38*x^4 + 137*x^5 + 646*x^6 + 3241*x^7 +...
log(A(x)) = x + 3*x^2/2 + 25*x^3/3 + 111*x^4/4 + 456*x^5/5 + 2697*x^6/6 + 15961*x^7/7 +...+ A166899(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m, k)^4*x^k)*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m\2, binomial(m-k, k)^4*m/(m-k))*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A166897, variants: A166894, A166898.
Sequence in context: A081956 A056182 A120278 * A143960 A122117 A322211
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 23 2009
STATUS
approved