login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120278
Sum[Sum[C(2k,k),{k,1,m}],{m,1,n}], where C(2k,k)=(2k)!/(k!)^2=A000984[k].
1
2, 10, 38, 136, 486, 1760, 6466, 24042, 90238, 341190, 1297574, 4958114, 19019254, 73196994, 282492254, 1092867904, 4236849774, 16455966944, 64020347914, 249431257704, 973100041934, 3800867789884, 14862066265434, 58170868424084
OFFSET
1,1
COMMENTS
a(2(p-1)) is divisible by p^2 for p=7,13,19,31,37,43,61,67.. A002476 Primes of form 6n + 1.
LINKS
FORMULA
a(n) = Sum[Sum[(2k)!/(k!)^2,{k,1,m}],{m,1,n}].
a(n) = 2 * Sum[ A079309[k], {k,1,n} ] = Sum[ A066796[k], {k,1,n} ]. - Alexander Adamchuk, Sep 01 2006
G.f.: x*(1/Sqrt[1-4*x]-1)/(x(x-1)^2) [From Harvey P. Dale, May 24 2011]
Recurrence: n*a(n) = 2*(3*n-1)*a(n-1) - (9*n-4)*a(n-2) + 2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(2*n+4)/(9*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012
MATHEMATICA
Table[Sum[Sum[(2k)!/(k!)^2, {k, 1, m}], {m, 1, n}], {n, 1, 50}]
CoefficientList[Series[(1/Sqrt[1-4 x]-1)/((x-1)^2 x), {x, 0, 50}], x] (* Harvey P. Dale, May 24 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jul 04 2006
STATUS
approved