login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum[Sum[C(2k,k),{k,1,m}],{m,1,n}], where C(2k,k)=(2k)!/(k!)^2=A000984[k].
1

%I #13 Nov 21 2013 12:48:59

%S 2,10,38,136,486,1760,6466,24042,90238,341190,1297574,4958114,

%T 19019254,73196994,282492254,1092867904,4236849774,16455966944,

%U 64020347914,249431257704,973100041934,3800867789884,14862066265434,58170868424084

%N Sum[Sum[C(2k,k),{k,1,m}],{m,1,n}], where C(2k,k)=(2k)!/(k!)^2=A000984[k].

%C a(2(p-1)) is divisible by p^2 for p=7,13,19,31,37,43,61,67.. A002476 Primes of form 6n + 1.

%H Vincenzo Librandi, <a href="/A120278/b120278.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) = Sum[Sum[(2k)!/(k!)^2,{k,1,m}],{m,1,n}].

%F a(n) = 2 * Sum[ A079309[k], {k,1,n} ] = Sum[ A066796[k], {k,1,n} ]. - _Alexander Adamchuk_, Sep 01 2006

%F G.f.: x*(1/Sqrt[1-4*x]-1)/(x(x-1)^2) [From Harvey P. Dale, May 24 2011]

%F Recurrence: n*a(n) = 2*(3*n-1)*a(n-1) - (9*n-4)*a(n-2) + 2*(2*n-1)*a(n-3). - _Vaclav Kotesovec_, Oct 19 2012

%F a(n) ~ 2^(2*n+4)/(9*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 19 2012

%t Table[Sum[Sum[(2k)!/(k!)^2,{k,1,m}],{m,1,n}],{n,1,50}]

%t CoefficientList[Series[(1/Sqrt[1-4 x]-1)/((x-1)^2 x),{x,0,50}],x] (* _Harvey P. Dale_, May 24 2011 *)

%Y Cf. A000984, A066796, A002476.

%Y Cf. A066796, A079309.

%K nonn

%O 1,1

%A _Alexander Adamchuk_, Jul 04 2006