login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122117
a(n) = 3*a(n-1) + 4*a(n-2), with a(0)=1, a(1)=2.
10
1, 2, 10, 38, 154, 614, 2458, 9830, 39322, 157286, 629146, 2516582, 10066330, 40265318, 161061274, 644245094, 2576980378, 10307921510, 41231686042, 164926744166, 659706976666, 2638827906662, 10555311626650, 42221246506598
OFFSET
0,2
COMMENTS
Inverse binomial transform of A005053. Binomial transform of [1, 1, 7, 13, 55, ...] = A015441(n+1).
Convolved with [1, 2, 2, 2, ...] = powers of 4: [1, 4, 16, 64, ...]. - Gary W. Adamson, Jun 02 2009
a(n) is the number of compositions of n when there are 2 types of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010
FORMULA
a(n) = 2*A108981(n-1) for n > 0, with a(0) = 1.
a(2*n) = 4*a(2*n-1) + 2, a(2*n+1) = 4*a(2*n) - 2.
a(n) = Sum_{k=0..n} 2^(n-k)*A055380(n,k).
G.f.: (1-x)/(1-3*x-4*x^2).
Lim_{n->infinity} a(n+1)/a(n) = 4.
a(n) = Sum_{k=0..n} A122016(n,k)*2^k. - Philippe Deléham, Nov 05 2008
MATHEMATICA
CoefficientList[Series[(1-x)/(1-3*x-4*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 06 2012 *)
PROG
(Sage) from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1, 2, 3, 4, lambda n: 0); [next(it) for i in range(24)] # Zerinvary Lajos, Jul 03 2008
(Sage) ((1-x)/(1-3*x-4*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 18 2019
(PARI) Vec((1-x)/(1-3*x-4*x^2)+O(x^30)) \\ Charles R Greathouse IV, Jan 11 2012
(Magma) I:=[1, 2]; [n le 2 select I[n] else 3*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 06 2012
(GAP) a:=[1, 2];; for n in [3..30] do a[n]:=3*a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, May 18 2019
CROSSREFS
Cf. A201455.
Sequence in context: A120278 A166898 A143960 * A322211 A120949 A186097
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Oct 19 2006
EXTENSIONS
Corrected by T. D. Noe, Nov 07 2006
STATUS
approved