The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015441 Generalized Fibonacci numbers. 47
 0, 1, 1, 7, 13, 55, 133, 463, 1261, 4039, 11605, 35839, 105469, 320503, 953317, 2876335, 8596237, 25854247, 77431669, 232557151, 697147165, 2092490071, 6275373061, 18830313487, 56482551853, 169464432775, 508359743893, 1525146340543, 4575304803901, 13726182847159 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) is the coefficient of x^(n-1) in the bivariate Fibonacci polynomials F(n)(x,y) = xF(n-1)(x,y) + yF(n-2)(x,y), F(0)(x,y)=0, F(1)(x,y)=1, when y=6x^2. - Mario Catalani (mario.catalani(AT)unito.it), Dec 06 2002 For n>=1: number of length-(n-1) strings with letters {0,1,2,3,4,5,6,7} where no two consecutive letters are nonzero, see fxtbook link below. - Joerg Arndt, Apr 08 2011 Starting with offset 1 and convolved with (1, 3, 3, 3, ...) = A003462: (1, 4, 13, 40, ...). - Gary W. Adamson, May 28 2009 a(n) is identical to its inverse binomial transform signed. Differences: A102901. - Paul Curtz, Feb 23 2010 The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=2, 7*a(n-2) equals the number of 7-colored compositions of n with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011 Pisano period lengths: 1, 1, 1, 2, 20, 1, 6, 2, 3, 20, 5, 2, 12, 6, 20, 4, 16, 3, 18, 20, ... - R. J. Mathar, Aug 10 2012 A015441 and A015518 are the only integer sequences (from the family of homogeneous linear recurrence relation of order 2 with positive integer coefficients with initial values a(0)=0 and a(1)=1) whose ratio a(n+1)/a(n) converges to 3 as n approaches infinity. - Felix P. Muga II, Mar 14 2014 This is an autosequence of the first kind: the array of successive differences shows a main diagonal of zeros and the inverse binomial transform is identical to the sequence (with alternating signs). - Pointed out by Paul Curtz, Dec 05 2016 First two upper diagonals: A000400(n). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe) Joerg Arndt, Matters Computational (The Fxtbook), p. 317-318 A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019. M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7. H. Li, T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 48. F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate. A. G. Shannon, J. V. Leyendekkers, The Golden Ratio family and the Binet equation, Notes on Number Theory and Discrete Mathematics, Vol. 21, No. 2, (2015), 35-42. Index entries for linear recurrences with constant coefficients, signature (1,6) FORMULA G.f.: x/((1+2*x)*(1-3*x)). a(n) = a(n-1) + 6*a(n-2). a(n) = (1/5)*((3^n)-((-2)^n)). - henryk.wicke(AT)stud.uni-hannover.de E.g.f. (exp(3*x) - exp(-2*x))/5. - Paul Barry, Apr 20 2003 a(n+1) = Sum_{k=0..ceiling(n/2)} 6^k*binomial(n-k, k). - Benoit Cloitre, Mar 06 2004 a(n) = (A000244(n) - A001045(n+1)(-1)^n - A001045(n)(-1)^n)/5. - Paul Barry, Apr 27 2004 The binomial transform of [1,1,7,13,55,133,463,...] is A122117. - Philippe Deléham, Oct 19 2006 a(n+1) = Sum_{k=0..n} A109466(n,k)*(-6)^(n-k). - Philippe Deléham, Oct 26 2008 a(n) = 3a(n-1) + (-1)^(n+1)*A000079(n-1). - Paul Curtz, Feb 23 2010 G.f.: Q(0) -1, where Q(k) = 1 + 6*x^2 + (k+2)*x - x*(k+1 + 6*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013 a(n) = (Sum_{1<=k<=n, k odd} binomial(n,k)*5^(k-1))/2^(n-1). - Vladimir Shevelev, Feb 05 2014 a(-n) = -(-1)^n * a(n) / 6^n for all n in Z. - Michael Somos, Mar 18 2014 From _Peter Bala, Apr 01 2015: (Start) Sum_{n >= 0} a(n+1)*x^n = exp( Sum_{n >= 1} A087451(n)*x^n/n ). For k = 0, 1, 2, ... and for n >= 1, 5^k*a(n) | a(5^k*n). The expansion of exp( Sum_{n >= 1} a(5*n)/(5*a(n))*x^n/n ) has integral coefficients. Cf. A001656. (End) EXAMPLE G.f. = x + x^2 + 7*x^3 + 13*x^4 + 55*x^5 + 133*x^6 + 463*x^7 + 1261*x^8 + ... MAPLE A015441:=n->(1/5)*((3^n)-((-2)^n)); seq(A015441(n), n=0..30); # Wesley Ivan Hurt, Mar 14 2014 MATHEMATICA a[n_]:=(MatrixPower[{{1, 4}, {1, -2}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *) LinearRecurrence[{1, 6}, {0, 1}, 30] (* Harvey P. Dale, Apr 26 2011 *) CoefficientList[Series[x/((1 + 2 x) (1 - 3 x)), {x, 0, 29}], x] (* Michael De Vlieger, Dec 05 2016 *) PROG (PARI) {a(n) = (3^n - (-2)^n) / 5}; (Sage) [lucas_number1(n, 1, -6) for n in range(0, 27)] # Zerinvary Lajos, Apr 22 2009 (MAGMA) I:=[0, 1]; [n le 2 select I[n] else Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018 CROSSREFS Cf. A000079, A003462, A016153, A109466, A122117. Cf. A001656, A087451. Cf. A000400. Sequence in context: A112540 A193489 A091005 * A255286 A253210 A183180 Adjacent sequences:  A015438 A015439 A015440 * A015442 A015443 A015444 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 03:34 EDT 2020. Contains 336436 sequences. (Running on oeis4.)