

A015443


Generalized Fibonacci numbers: a(n) = a(n1) + 8*a(n2).


27



1, 1, 9, 17, 89, 225, 937, 2737, 10233, 32129, 113993, 371025, 1282969, 4251169, 14514921, 48524273, 164643641, 552837825, 1869986953, 6292689553, 21252585177, 71594101601, 241614783017, 814367595825, 2747285859961
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Construct a graph as follows: form the graph whose adjacency matrix is the tensor product of that of P_3 and [1,1;1,1], then add a loop at each of the extremity nodes. a(n1) counts walks of length n between adjacent nodes.  Paul Barry, Nov 12 2004
The compositions of n in which each natural number is colored by one of p different colors are called pcolored compositions of n. For n >= 2, 9*a(n2) equals the number of 9colored compositions of n with all parts >= 2, such that no adjacent parts have the same color.  Milan Janjic, Nov 26 2011
Pisano period lengths: 1, 1, 6, 1, 24, 6, 16, 1, 6, 24, 110, 6, 56, 16, 24, 2, 16, 6, 60, 24, ...  R. J. Mathar, Aug 10 2012


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Joerg Arndt, Matters Computational (The Fxtbook), p. 318
M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Index entries for linear recurrences with constant coefficients, signature (1,8)


FORMULA

a(n) = (((1+sqrt(33))/2)^(n+1)  ((1sqrt(33))/2)^(n+1))/sqrt(33).
a(n) = Sum_{k=0..n} A109466(n,k)*(8)^(nk).  Philippe Deléham, Oct 26 2008
G.f.: 1/(1x8*x^2).  R. J. Mathar, Apr 07 2011
a(n) = (Sum_{1<=k<=n+1, k odd} C(n+1,k)*33^((k1)/2))/2^n.  Vladimir Shevelev, Feb 05 2014


MATHEMATICA

CoefficientList[Series[1/(1x8*x^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *)


PROG

(Sage) [lucas_number1(n, 1, 8) for n in range(1, 27)] # Zerinvary Lajos, Apr 22 2009
(MAGMA) [ n eq 1 select 1 else n eq 2 select 1 else Self(n1)+8*Self(n2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
(PARI) a(n)=Vec(1/(1x8*x^2)+O(x^99)) \\ Charles R Greathouse IV, Feb 03 2014


CROSSREFS

Cf. A015442, A015441, A100302, A100303.
Sequence in context: A166705 A116526 A197396 * A253212 A217965 A121442
Adjacent sequences: A015440 A015441 A015442 * A015444 A015445 A015446


KEYWORD

nonn,easy


AUTHOR

Olivier Gérard


STATUS

approved



