This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015446 Generalized Fibonacci numbers: a(n) = a(n-1) + 10*a(n-2). 15
 1, 1, 11, 21, 131, 341, 1651, 5061, 21571, 72181, 287891, 1009701, 3888611, 13985621, 52871731, 192727941, 721445251, 2648724661, 9863177171, 36350423781, 134982195491, 498486433301, 1848308388211, 6833172721221 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n.  For n>=2, 11*a(n-2) equals the number of 11-colored compositions of n with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011 For a(n) = [(1+(4m+1)^1/2)^n)-(1-(4m+1)^1/2))^n)]/[(2^n)(4m+1)^1/2), a(n)/a(n-1) appears to converge to (1+sqrt(4m+1))/2. Here with m = 10, the numbers in the sequence are congruent with those of the Fibonacci sequence modulo m-1 = 9. For example, F(8) = 21 (Fibonacci) corresponds to a(8) = 5061 (here) because 2+1 and 5+0+1+6 are congruent. - Maleval Francis, Nov 12 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1, 10). FORMULA a(n) = (((1+sqrt(41))/2)^(n+1) - ((1-sqrt(41))/2)^(n+1))/sqrt(41). From Paul Barry, Sep 10 2005: (Start) a(n) = Sum_{k=0..n} binomial((n+k)/2, k)*(1+(-1)^(n-k))*10^((n-k)/2)/2. a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*10^k. (End) a(n) is the entry (M^n)_1,1 where the matrix M = [1,2;5,0]. - Simone Severini, Jun 22 2006 a(n) = Sum_{k=0..n} A109466(n,k)*(-10)^(n-k). - Philippe Deléham, Oct 26 2008 G.f.: 1/(1-x-10*x^2). - Colin Barker, Feb 03 2012 a(n) = (sum{1<=k<=n+1, k odd}C(n+1,k)*41^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014 MATHEMATICA Table[MatrixPower[{{1, 2}, {5, 0}}, n][[1]][[1]], {n, 0, 44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *) CoefficientList[Series[1/(1-x-10*x^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *) LinearRecurrence[{1, 10}, {1, 1}, 30] (* Harvey P. Dale, Dec 12 2018 *) PROG (Sage) [lucas_number1(n, 1, -10) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009 (MAGMA) [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+10*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011 (PARI) a(n)=([1, 2; 5, 0]^n)[1, 1] \\ Charles R Greathouse IV, Mar 09 2014 CROSSREFS Cf. A015447, A015443. Sequence in context: A094623 A321509 A034922 * A254208 A083177 A110466 Adjacent sequences:  A015443 A015444 A015445 * A015447 A015448 A015449 KEYWORD nonn,easy,changed AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 07:47 EST 2019. Contains 329914 sequences. (Running on oeis4.)