The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015445 Generalized Fibonacci numbers: a(n) = a(n-1) + 9*a(n-2). 18
 1, 1, 10, 19, 109, 280, 1261, 3781, 15130, 49159, 185329, 627760, 2295721, 7945561, 28607050, 100117099, 357580549, 1258634440, 4476859381, 15804569341, 56096303770, 198337427839, 703204161769, 2488241012320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 2, 10*a(n-2) equals the number of 10-colored compositions of n with all parts >= 2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,9). FORMULA a(n) = (((1+sqrt(37))/2)^(n+1) - ((1-sqrt(37))/2)^(n+1))/sqrt(37). a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*9^k. - Paul Barry, Jul 20 2004 a(n) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*3^(n-k)/2}. - Paul Barry, Aug 28 2005 a(n) = Sum_{k=0..n} A109466(n,k)*(-9)^(n-k). - Philippe Deléham, Oct 26 2008 a(n) = (1/37)*(1/2+(1/2)*sqrt(37))^n*sqrt(37)-(1/37)*(1/2-(1/2)*sqrt(37))^n*sqrt(37). - Paolo P. Lava, Oct 01 2008 (May produce sequence with a different offset.) a(n) = (-703*(1/2-sqrt(37)/2)^n + 199*sqrt(37)*(1/2-sqrt(37)/2)^n-333*(1/2+sqrt(37)/2)^n + 171*sqrt(37)*(1/2+sqrt(37)/2)^n)/(74*(5*sqrt(37)-14)). - Alexander R. Povolotsky, Oct 13 2010 a(n) = Sum_{1<=k<=n+1, k odd} C(n+1,k)*37^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014 G.f.: 1/(1-x-9*x^2). - Philippe Deléham, Feb 19 2020 a(n) = J(n, 9/2), where J(n,x) are the Jacobsthal polynomials. - G. C. Greubel, Feb 18 2020 E.g.f.: exp(x/2)*(sqrt(37)*cosh(sqrt(37)*x/2) + sinh(sqrt(37)*x/2))/sqrt(37). - Stefano Spezia, Feb 19 2020 MAPLE m:=25; S:=series(1/(1-x-9*x^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 18 2020 MATHEMATICA CoefficientList[Series[1/(1-x-9*x^2), {x, 0, 25}], x] (* or *) LinearRecurrence[{1, 9}, {1, 1}, 25] (* G. C. Greubel, Apr 30 2017 *) PROG (Sage) [lucas_number1(n, 1, -9) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009 (MAGMA) [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+9*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011 (PARI) a(n)=([0, 1; 9, 1]^n*[1; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016 CROSSREFS Cf. A015443, A015442, A026595, A128099. Sequence in context: A131495 A060630 A070199 * A220005 A253213 A293929 Adjacent sequences:  A015442 A015443 A015444 * A015446 A015447 A015448 KEYWORD nonn,easy AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Oct 11 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 07:59 EDT 2021. Contains 343030 sequences. (Running on oeis4.)