login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220005
Number of nX3 arrays of the minimum value of corresponding elements and their horizontal, vertical or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..3 nX3 array
1
10, 19, 109, 560, 2410, 9094, 32575, 114987, 396917, 1315916, 4156201, 12519404, 36142411, 100533680, 270678655, 708009173, 1804416902, 4491311579, 10939219139, 26113766099, 61178754251, 140820281122, 318767877586
OFFSET
1,1
COMMENTS
Column 3 of A220010
LINKS
FORMULA
Empirical: a(n) = (1/8841761993739701954543616000000)*n^29 + (1/152444172305856930250752000000)*n^28 - (1/3350421369359492972544000000)*n^27 + (1/25471039650101408563200000)*n^26 + (43/41363226782215962624000000)*n^25 - (5029/37226904103994366361600000)*n^24 + (870547/91972351315750787481600000)*n^23 - (404867/6797956401598971248640000)*n^22 - (2777213/176570296145427824640000)*n^21 + (157540321/147141913454523187200000)*n^20 - (8521847489/359680232888834457600000)*n^19 - (5896756171/17037484715786895360000)*n^18 + (1999193158206953/46512333274098224332800000)*n^17 - (1754864756699611/1368009802179359539200000)*n^16 + (347465675323531/30066149498447462400000)*n^15 + (5807854993750157/13028664782660567040000)*n^14 - (63962106808513283/3549475982455603200000)*n^13 + (726321071153298251/2662106986841702400000)*n^12 - (148797834273315164401/289685642113592524800000)*n^11 - (611073680485163068111/11587425684543700992000)*n^10 + (1108080234396388175644549/1138050736874827776000000)*n^9 - (58248175543969688527/7702855864704000000)*n^8 + (283282051354077778828369/28513253756123136000000)*n^7 + (1544529331894217156756731/5385836820601036800000)*n^6 - (1108226389277296065072353107/612638938343367936000000)*n^5 - (8742494209572335492077019/2042129794477893120000)*n^4 + (130381592817894359575/1282342100143104)*n^3 - (101179310872363022329/192944991919680)*n^2 + (2861223530470917191/2329089562800)*n - 1126080 for n>10
EXAMPLE
Some solutions for n=3
..3..0..0....2..2..2....2..0..0....1..1..1....2..2..2....0..0..0....0..0..0
..3..0..0....2..0..0....2..0..0....1..0..0....2..1..1....0..0..0....0..0..0
..3..2..2....0..0..0....1..1..1....0..0..0....1..1..1....3..0..0....2..2..3
CROSSREFS
Sequence in context: A060630 A070199 A015445 * A253213 A293929 A177203
KEYWORD
nonn
AUTHOR
R. H. Hardin Dec 03 2012
STATUS
approved