login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070199
Number of palindromes of length <= n.
6
10, 19, 109, 199, 1099, 1999, 10999, 19999, 109999, 199999, 1099999, 1999999, 10999999, 19999999, 109999999, 199999999, 1099999999, 1999999999, 10999999999, 19999999999, 109999999999, 199999999999, 1099999999999, 1999999999999, 10999999999999, 19999999999999
OFFSET
1,1
FORMULA
From Colin Barker, Jun 30 2012: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3).
G.f.: x*(10 + 9*x - 10*x^2)/((1 - x)*(1 - 10*x^2)). (End)
a(n) = (-2*sqrt(10)+10^(n/2)*(11+2*sqrt(10)+(-1)^n*(-11+2*sqrt(10))))/(2*sqrt(10)). - Harvey P. Dale, Mar 18 2016
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2^(n/2 + 1)*5^(n/2) - 1 for n even.
a(n) = 11*10^((n-1)/2) - 1 for n odd. (End)
a(n) = A050250(n) + 1. - Andrew Howroyd, Oct 28 2020
E.g.f.: 2*cosh(sqrt(10)*x) - cosh(x) - 1 - sinh(x) + 11*sinh(sqrt(10)*x)/sqrt(10). - Stefano Spezia, Jul 01 2023
MATHEMATICA
LinearRecurrence[{1, 10, -10}, {10, 19, 109}, 30] (* Harvey P. Dale, Mar 18 2016 *)
PROG
(PARI) Vec(x*(10+9*x-10*x^2)/((1-x)*(1-10*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017
CROSSREFS
Partial sums of A070252.
Cf. A050250.
Sequence in context: A166706 A131495 A060630 * A015445 A220005 A253213
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved