|
|
A050250
|
|
Number of nonzero palindromes less than 10^n.
|
|
15
|
|
|
9, 18, 108, 198, 1098, 1998, 10998, 19998, 109998, 199998, 1099998, 1999998, 10999998, 19999998, 109999998, 199999998, 1099999998, 1999999998, 10999999998, 19999999998, 109999999998, 199999999998, 1099999999998, 1999999999998, 10999999999998
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
G. J. Simmons, Palindromic powers, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy]
|
|
FORMULA
|
a(2*k) = 2*10^k - 2, a(2*k + 1) = 11*10^k - 2. - Sascha Kurz, Apr 14 2002
a(n) = Sum_{i=1..n} 9*10^floor((i-1)/2).
a(n) = 9*Sum_{i=1..n} 10^floor((i-1)/2). (End)
G.f.: 9*x*(1+x)/((1-x)*(1-10*x^2)).
a(n) = (1/2)*10^((2*n + (-1)^n - 1)/4)*(13 - 9*(-1)^n) - 2. (End)
a(1)=9, a(2)=18, a(3)=108; for n>3, a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3). - Harvey P. Dale, Jan 29 2012
E.g.f.: 2*cosh(sqrt(10)*x) - 2*(cosh(x) + sinh(x)) + 11*sinh(sqrt(10)*x)/sqrt(10). - Stefano Spezia, Jun 11 2022
|
|
MAPLE
|
A050250List := proc(len); local s, egf, ser; s:= 11/(2*sqrt(10));
egf := -2*exp(x) + (1-s)*exp(-sqrt(10)*x) + (1+s)*exp(sqrt(10)*x);
ser := series(egf, x, len+2): seq(simplify(n!*coeff(ser, x, n)), n = 1..len) end:
|
|
MATHEMATICA
|
LinearRecurrence[{1, 10, -10}, {9, 18, 108}, 30] (* Harvey P. Dale, Jan 29 2012 *)
CoefficientList[Series[2Cosh[Sqrt[10]x]-2(Cosh[x]+Sinh[x])+11Sinh[Sqrt[10]x]/Sqrt[10], {x, 0, 25}], x]Table[n!, {n, 0, 25}] (* Stefano Spezia, Jun 11 2022 *)
|
|
PROG
|
(Python)
def a(n):
m = 10 ** (n >> 1)
if n & 1 == 0:
return (m - 1) << 1
else:
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,base,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|