The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050249 Weakly prime numbers (changing any one decimal digit always produces a composite number). Also called digitally delicate primes. 20
 294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139, 5152507, 5564453, 5575259, 6173731, 6191371, 6236179, 6463267, 6712591, 7204777, 7469789, 7469797 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Tao proved that this sequence is infinite. - T. D. Noe, Mar 01 2011 For k = 5, 6, 7, 8, 9, 10, the number of terms < 10^k in this sequence is 0, 5, 35, 334, 3167, 32323. - Jean-Marc Rebert, Nov 10 2015 REFERENCES Michael Filaseta and Jeremiah Southwick, Primes that become composite after changing an arbitrary digit, Math. Comp. (2021) Vol. 90, 979-993. doi:10.1090/mcom/3593 LINKS Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (terms 1..1317 from Klaus Brockhaus, terms 1318..3167 from Jean-Marc Rebert). Michael Filaseta and Jacob Juillerat, Consecutive primes which are widely digitally delicate, arXiv:2101.08898 [math.NT], 2021. Jon Grantham, Finding a Widely Digitally Delicate Prime, arXiv:2109.03923 [math.NT], 2021. Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33. Jackson Hopper and Paul Pollack, Digitally delicate primes, arXiv:1510.03401 [math.NT], 2015. Dana Jacobsen, Digitally delicate primes up to 1e11 Matt Parker, How do you prove a prime is infinitely fragile?, Stand-up Maths YouTube video, 2022. Jeremiah T. Southwick, Two Inquiries Related to the Digits of Prime Numbers, Ph. D. Dissertation, University of South Carolina (2020). Terence Tao, A remark on primality testing and decimal expansions, arXiv:0802.3361 [math.NT], 2008-2010; Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413. Eric Weisstein's World of Mathematics, Weakly Prime MATHEMATICA fQ[n_] := Block[{d = IntegerDigits@ n, t = {}}, Do[AppendTo[t, FromDigits@ ReplacePart[d, i -> #] & /@ DeleteCases[Range[0, 9], x_ /; x == d[[i]]]], {i, Length@ d}]; ! AnyTrue[Flatten@ t, PrimeQ]] ; Select[Prime@ Range[10^5], fQ] (* Michael De Vlieger, Nov 10 2015, Version 10 *) PROG (Magma) IsA118118:=function(n); D:=Intseq(n); return forall{ : k in [1..#D], j in [0..9] | j eq D[k] or not IsPrime(Seqint(S)) where S:=Insert(D, k, k, [j]) }; end function; [ p: p in PrimesUpTo(8000000) | IsA118118(p) ]; // Klaus Brockhaus, Feb 28 2011 (PARI) isokp(n) = {v = digits(n); for (k=1, #v, w = v; for (j=0, 9, if (j != v[k], w[k] = j; ntest = subst(Pol(w), x, 10); if (isprime(ntest), return(0)); ); ); ); return (1); } lista(nn) = {forprime(p=2, nn, if (isokp(p), print1(p, ", ")); ); } \\ Michel Marcus, Dec 15 2015 (Python) from sympy import isprime def h1(n): # hamming distance 1 neighbors of n s = str(n); d = "0123456789"; L = len(s) yield from (int(s[:i]+c+s[i+1:]) for c in d for i in range(L) if c!=s[i]) def ok(n): return isprime(n) and all(not isprime(k) for k in h1(n) if k!=n) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jun 19 2022 CROSSREFS Cf. A118118, A158124 (weakly primes), A158125 (weakly primes). Cf. A137985 (analogous base-2 sequence), A186995 (weak primes in base n). Sequence in context: A254843 A318787 A158124 * A354440 A224973 A328664 Adjacent sequences: A050246 A050247 A050248 * A050250 A050251 A050252 KEYWORD nonn,base AUTHOR Eric W. Weisstein EXTENSIONS Edited by Charles R Greathouse IV, Aug 02 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 02:33 EDT 2024. Contains 375018 sequences. (Running on oeis4.)