The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158124 Weakly prime numbers (or isolated primes): changing any one decimal digit always produces a composite number, with restriction that first digit may not be changed to a 0. 9
 294001, 505447, 584141, 604171, 929573, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3070663, 3085553, 3326489, 4393139, 5152507, 5285767, 5564453, 5575259, 5974249, 6173731, 6191371, 6236179, 6463267, 6712591, 7204777, 7469789, 7469797, 7810223 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The definition could be restated as "primes p with d digits such that there is no prime q with at most d digits at Hamming distance 1 from p (in base 10)". - N. J. A. Sloane, May 06 2019 For the following values of k, 5, 6, 7, 8, 9, 10, the number of terms < 10^k in this sequence is 0, 6, 43, 406, 3756, 37300. - Jean-Marc Rebert, Nov 10 2015 LINKS Jean-Marc Rebert, Table of n, a(n) for n = 1..3756 C. Rivera, Weakly Primes Eric Weisstein's World of Mathematics, Weakly Prime MAPLE filter:= proc(n) local L, i, d, ds; if not isprime(n) then return false fi; L:= convert(n, base, 10); for i from 1 to nops(L) do if i = nops(L) then ds:= {\$1..9} minus {L[i]} elif i = 1 then ds:= {1, 3, 7, 9} minus {L[i]} else ds:= {\$0..9} minus {L[i]} fi; for d in ds do if isprime(n + (d - L[i])*10^(i-1)) then return false fi; od od; true end proc: select(filter, [seq(i, i=11..10^6, 2)]); # Robert Israel, Dec 15 2015 MATHEMATICA Select[Prime@ Range[10^5], Function[n, Function[w, Total@ Map[Boole@ PrimeQ@ # &, DeleteCases[#, n]] &@ Union@ Flatten@ Map[Function[d, FromDigits@ ReplacePart[w, d -> #] & /@ If[d == 1, #, Prepend[#, 0]] &@ Range@ 9], Range@ Length@ w] == 0]@ IntegerDigits@ n]] (* Michael De Vlieger, Dec 13 2016 *) PROG (PARI) isokp(n) = {v = digits(n); for (k=1, #v, w = v; if (k==1, idep = 1, idep=0); for (j=idep, 9, if (j != v[k], w[k] = j; ntest = subst(Pol(w), x, 10); if (isprime(ntest), return(0)); ); ); ); return (1); } lista(nn) = {forprime(p=2, nn, if (isokp(p), print1(p, ", ")); ); } \\ Michel Marcus, Dec 15 2015 (Python) from sympy import isprime def h1(n): # hamming distance 1 neighbors of n, not starting with 0 s = str(n); d = "0123456789"; L = len(s) yield from (int(s[:i]+c+s[i+1:]) for c in d for i in range(L) if c!=s[i] and not (i==0 and c=="0")) def ok(n): return isprime(n) and all(not isprime(k) for k in h1(n)) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 31 2022 CROSSREFS Cf. A050249, A158125 (weakly primes), A186995, A192545. Sequence in context: A255754 A254843 A318787 * A050249 A354440 A224973 Adjacent sequences: A158121 A158122 A158123 * A158125 A158126 A158127 KEYWORD nonn,base AUTHOR Eric W. Weisstein, Mar 13 2009 EXTENSIONS Edited by Charles R Greathouse IV, Aug 02 2010 Missing a(3385) inserted into b-file by Andrew Howroyd, Feb 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 12:20 EDT 2024. Contains 375021 sequences. (Running on oeis4.)