login
A158123
a(n) = 81*n + 1.
2
82, 163, 244, 325, 406, 487, 568, 649, 730, 811, 892, 973, 1054, 1135, 1216, 1297, 1378, 1459, 1540, 1621, 1702, 1783, 1864, 1945, 2026, 2107, 2188, 2269, 2350, 2431, 2512, 2593, 2674, 2755, 2836, 2917, 2998, 3079, 3160, 3241, 3322, 3403, 3484, 3565
OFFSET
1,1
COMMENTS
The identity (81*n + 1)^2 - (81*n^2 + 2*n)*9^2 = 1 can be written as a(n)^2 - A177099(n)*9^2 = 1. - Vincenzo Librandi, Feb 03 2012
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(9^2*t+2)).
FORMULA
G.f.: x*(82-x)/(1-x)^2. - Vincenzo Librandi, Feb 03 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 03 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {82, 163}, 50] (* Vincenzo Librandi, Feb 03 2012 *)
PROG
(Magma) I:=[82, 163]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 03 2012
(PARI) for(n=1, 50, print1(81*n + 1", ")); \\ Vincenzo Librandi, Feb 03 2012
CROSSREFS
Cf. A177099.
Sequence in context: A264352 A044252 A044633 * A370951 A044414 A044795
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 13 2009
STATUS
approved