login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158123
a(n) = 81*n + 1.
2
82, 163, 244, 325, 406, 487, 568, 649, 730, 811, 892, 973, 1054, 1135, 1216, 1297, 1378, 1459, 1540, 1621, 1702, 1783, 1864, 1945, 2026, 2107, 2188, 2269, 2350, 2431, 2512, 2593, 2674, 2755, 2836, 2917, 2998, 3079, 3160, 3241, 3322, 3403, 3484, 3565
OFFSET
1,1
COMMENTS
The identity (81*n + 1)^2 - (81*n^2 + 2*n)*9^2 = 1 can be written as a(n)^2 - A177099(n)*9^2 = 1. - Vincenzo Librandi, Feb 03 2012
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(9^2*t+2)).
FORMULA
G.f.: x*(82-x)/(1-x)^2. - Vincenzo Librandi, Feb 03 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 03 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {82, 163}, 50] (* Vincenzo Librandi, Feb 03 2012 *)
PROG
(Magma) I:=[82, 163]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 03 2012
(PARI) for(n=1, 50, print1(81*n + 1", ")); \\ Vincenzo Librandi, Feb 03 2012
CROSSREFS
Cf. A177099.
Sequence in context: A264352 A044252 A044633 * A370951 A044414 A044795
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 13 2009
STATUS
approved